Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834315

ABSTRACT

The aggregation of cancer cells provides a survival signal for disseminating cancer cells; however, the underlying molecular mechanisms have yet to be elucidated. Using qPCR gene arrays, this study investigated the changes in cancer-specific genes as well as genes regulating mitochondrial quality control, metabolism, and oxidative stress in response to aggregation and hypoxia in our progressive ovarian cancer models representing slow- and fast-developing ovarian cancer. Aggregation increased the expression of anti-apoptotic, stemness, epithelial-mesenchymal transition (EMT), angiogenic, mitophagic, and reactive oxygen species (ROS) scavenging genes and functions, and decreased proliferation, apoptosis, metabolism, and mitochondrial content genes and functions. The incorporation of stromal vascular cells (SVF) from obese mice into the spheroids increased DNA repair and telomere regulatory genes that may represent a link between obesity and ovarian cancer risk. While glucose had no effect, glutamine was essential for aggregation and supported proliferation of the spheroid. In contrast, low glucose and hypoxic culture conditions delayed adhesion and outgrowth capacity of the spheroids independent of their phenotype, decreased mitochondrial mass and polarity, and induced a shift of mitochondrial dynamics towards mitophagy. However, these conditions did not reduce the appearance of polarized mitochondria at adhesion sites, suggesting that adhesion signals that either reversed mitochondrial fragmentation or induced mitobiogenesis can override the impact of low glucose and oxygen levels. Thus, the plasticity of the spheroids' phenotype supports viability during dissemination, allows for the adaptation to changing conditions such as oxygen and nutrient availability. This may be critical for the development of an aggressive cancer phenotype and, therefore, could represent druggable targets for clinical interventions.


Subject(s)
Ovarian Neoplasms , Humans , Animals , Female , Mice , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress , Oxygen/pharmacology , Hypoxia , Glucose/metabolism
2.
Trends Ecol Evol ; 37(11): 942-952, 2022 11.
Article in English | MEDLINE | ID: mdl-35842325

ABSTRACT

Studying animal behavior as collective phenomena is a powerful tool for understanding social processes, including group coordination and decision-making. However, linking individual behavior during group decision-making to the preferences underlying those actions poses a considerable challenge. Optimal foraging theory, and specifically the marginal value theorem (MVT), can provide predictions about individual preferences, against which the behavior of groups can be compared under different models of influence. A major strength of formally linking optimal foraging theory to collective behavior is that it generates predictions that can easily be tested under field conditions. This opens the door to studying group decision-making in a range of species; a necessary step for revealing the ecological drivers and evolutionary consequences of collective decision-making.


Subject(s)
Behavior, Animal , Feeding Behavior , Animals , Biological Evolution , Decision Making
3.
Curr Pharmacol Rep ; 6(3): 71-84, 2020.
Article in English | MEDLINE | ID: mdl-32399388

ABSTRACT

The purpose of this review was to assess the advancement of applications for physiologically based pharmacokinetic (PBPK) modeling in various therapeutic areas. We conducted a PubMed search, and 166 articles published between 2012 and 2018 on FDA-approved drug products were selected for further review. Qualifying publications were summarized according to therapeutic area, medication(s) studied, pharmacokinetic model type utilized, simulator program used, and the applications of that modeling. The results showed a 13-fold increase in the number of papers published from 2012 to 2018, with the largest proportion of articles dedicated to the areas of infectious diseases, oncology, and neurology, and application extensions including prediction of drug-drug interactions due to metabolism and/or transporter-mediated effects and understanding drug kinetics in special populations. In addition, we profiled several high-impact studies whose results were used to guide package insert information and formulate dose recommendations. These results show that while utilization of PBPK modeling has drastically increased over the past several years, regulatory support, lack of easy-to-use systems for clinicians, and challenges with model validation remain major challenges for the widespread adoption of this practice in institutional and ambulatory settings. However, PBPK modeling will continue to be a useful tool in the future to assess therapeutic drug monitoring and the growing field of personalized medicine.

4.
Am J Physiol Cell Physiol ; 318(3): C476-C485, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31875698

ABSTRACT

Cell migration is centrally involved in a myriad of physiological processes, including morphogenesis, wound healing, tissue repair, and metastatic growth. The bioenergetics that underlie migratory behavior are not fully understood, in part because of variations in cell culture media and utilization of experimental cell culture systems that do not model physiological connective extracellular fibrous networks. In this study, we evaluated the bioenergetics of C2C12 myoblast migration and force production on fibronectin-coated nanofiber scaffolds of controlled diameter and alignment, fabricated using a nonelectrospinning spinneret-based tunable engineered parameters (STEP) platform. The contribution of various metabolic pathways to cellular migration was determined using inhibitors of cellular respiration, ATP synthesis, glycolysis, or glucose uptake. Despite immediate effects on oxygen consumption, mitochondrial inhibition only modestly reduced cell migration velocity, whereas inhibitors of glycolysis and cellular glucose uptake led to striking decreases in migration. The migratory metabolic sensitivity was modifiable based on the substrates present in cell culture media. Cells cultured in galactose (instead of glucose) showed substantial migratory sensitivity to mitochondrial inhibition. We used nanonet force microscopy to determine the bioenergetic factors responsible for single-cell force production and observed that neither mitochondrial nor glycolytic inhibition altered single-cell force production. These data suggest that myoblast migration is heavily reliant on glycolysis in cells grown in conventional media. These studies have wide-ranging implications for the causes, consequences, and putative therapeutic treatments aimed at cellular migration.


Subject(s)
Cell Movement/physiology , Energy Metabolism/physiology , Nanofibers , Animals , Anthracenes/pharmacology , Cell Movement/drug effects , Cells, Cultured , Energy Metabolism/drug effects , Galactose/pharmacology , Glycolysis/drug effects , Glycolysis/physiology , Mice
5.
Front Immunol ; 10: 2714, 2019.
Article in English | MEDLINE | ID: mdl-31849940

ABSTRACT

Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.


Subject(s)
Environmental Exposure , Lung/drug effects , Lung/pathology , Macrophages/metabolism , Titanium/adverse effects , Animals , Apoptosis/genetics , Apoptosis/immunology , Biomarkers , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Susceptibility , Gene Expression Profiling , Humans , L-Lactate Dehydrogenase/metabolism , Lung/metabolism , Lung/physiopathology , Macrophages/immunology , Macrophages/pathology , Male , Membrane Potential, Mitochondrial , Mice , Reactive Oxygen Species/metabolism , Respiratory Function Tests , Signal Transduction
6.
J Mol Cell Cardiol ; 135: 160-171, 2019 10.
Article in English | MEDLINE | ID: mdl-31445917

ABSTRACT

Novel therapeutic strategies to treat mitochondrial deficiencies in acute coronary syndromes are needed. Complex I of the mitochondrial electron transport system is damaged following ischemia/reperfusion (I/R) injury. This disruption contributes to aberrant electron transport, diminished bioenergetics, an altered redox environment, and mitochondrial damage involved in tissue injury. In this study, we determined the cardiac and mitochondrial effects of idebenone, a benzoquinone currently in several clinical trials with purported 'antioxidant' effects. We employed complimentary models of ischemia/reperfusion injury in perfused hearts, permeabilized cardiac fibers, isolated mitochondria, and in cells to elucidate idebenone's cardioprotective mechanism(s). In ex vivo whole hearts, infarct size was markedly reduced with post-ischemic idebenone treatment (25 ±â€¯5% area at risk, AAR) compared to controls (56 ±â€¯6% AAR, P < .05). Several parameters of hemodynamic function were also significantly improved after idebenone treatment. Parallel studies of anoxia/reoxygenation were conducted using isolated mitochondria and permeabilized ventricular fibers. In isolated mitochondria, we simultaneously monitored respiration and ROS emission. Idebenone treatment modestly elevated succinate-derived H2O2 production when compared to vehicle control (1.34 ±â€¯0.05 vs 1.21 ±â€¯0.05%, H2O2/O2 respectively, P < .05). Isolated mitochondria subjected to anoxia/reoxygenation demonstrated higher rates of respiration with idebenone treatment (2360 ±â€¯69 pmol/s*mg) versus vehicle control (1995 ±â€¯101 pmol/s*mg). Both mitochondria and permeabilized cardiac fibers produced high rates of H2O2 after anoxia/reoxygenation, with idebenone showing no discernable attenuation on H2O2 production. These insights were further investigated with studies in mitochondria isolated from reperfused ventricle. The profound decrease in complex-I dependent respiration after ischemia/reperfusion (701 ±â€¯59 pmolO2/s*mg compared to 1816 ±â€¯105 pmol O2/s*mg in normoxic mitochondria) was attenuated with idebenone treatment (994 ±â€¯76 vs pmol O2/s*mg, P < .05). Finally, the effects of idebenone were determined using permeabilized cell models with chemical inhibition of complex I. ADP-dependent oxidative phosphorylation capacity was significantly higher in complex-I inhibited cells treated acutely with idebenone (89.0 ±â€¯4.2 pmol/s*million cells versus 70.1 ±â€¯8.2 pmol/s*million cells in untreated cells). Taken together, these data indicate that the cardioprotective effects of idebenone treatment do not involve ROS-scavenging but appear to involve augmentation of the quinone pool, thus providing reducing equivalents downstream of complex I. As this compound is already in clinical trials for other indications, it may provide a safe and useful approach to mitigate ischemia/reperfusion injury in patients.


Subject(s)
Electron Transport Complex I/drug effects , Myocardial Infarction/drug therapy , Reperfusion Injury/drug therapy , Ubiquinone/analogs & derivatives , Animals , Disease Models, Animal , Electron Transport Complex I/genetics , Humans , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Rats , Reactive Oxygen Species/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquinone/pharmacology
7.
Sci Total Environ ; 541: 883-894, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26437357

ABSTRACT

The study of a Posidonia australis sedimentary archive has provided a record of changes in element concentrations (Al, Fe, Mn, Pb, Zn, Cr, Cd, Co, As, Cu, Ni and S) over the last 3000 years in the Australian marine environment. Human-derived contamination in Oyster Harbor (SW Australia) started ~100 years ago (AD ~1900) and exponentially increased until present. This appears to be related to European colonization of Australia and the subsequent impact of human activities, namely mining, coal and metal production, and extensive agriculture. Two contamination periods of different magnitude have been identified: Expansion period (EXP, AD ~1900-1970) and Establishment period (EST, AD ~1970 to present). Enrichments of chemical elements with respect to baseline concentrations (in samples older than ~115 cal years BP) were found for all elements studied in both periods, except for Ni, As and S. The highest enrichment factors were obtained for the EST period (ranging from 1.3-fold increase in Cu to 7.2-fold in Zn concentrations) compared to the EXP period (1.1-fold increase for Cu and Cr to 2.4-fold increase for Pb). Zinc, Pb, Mn and Co concentrations during both periods were 2- to 7-fold higher than baseline levels. This study demonstrates the value of Posidonia mats as long-term archives of element concentrations and trends in coastal ecosystems. We also provide preliminary evidence on the potential for Posidonia meadows to act as significant long-term biogeochemical sinks of chemical elements.


Subject(s)
Alismatales , Ecosystem , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Archives , Australia , Metals/analysis , Trace Elements/analysis
8.
PLoS Negl Trop Dis ; 7(8): e2404, 2013.
Article in English | MEDLINE | ID: mdl-24179562

ABSTRACT

BACKGROUND: The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. METHODOLOGY/PRINCIPLE FINDINGS: Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. CONCLUSIONS: hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and promising for clinical and field applications.


Subject(s)
Bacteriological Techniques/methods , Leprosy/microbiology , Mycobacterium leprae/cytology , Polymerase Chain Reaction/methods , Animals , Antigens, Bacterial/analysis , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytokines/analysis , Cytokines/genetics , Cytokines/metabolism , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Disease Models, Animal , Heat-Shock Proteins/analysis , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Leprostatic Agents/pharmacology , Leprosy/drug therapy , Mice , Mice, Nude , Microbial Viability/drug effects , Mycobacterium leprae/drug effects , Mycobacterium leprae/isolation & purification
9.
Front Physiol ; 2: 77, 2011.
Article in English | MEDLINE | ID: mdl-22059076

ABSTRACT

Parvalbumin (PV), an EF-hand protein family member, is a delayed calcium buffer that exchanges magnesium for calcium to facilitate fast skeletal muscle relaxation. Genetic approaches that express parvalbumin in the heart also enhance relaxation and show promise of being therapeutic against various cardiac diseases where relaxation is compromised. Unfortunately, skeletal muscle PVs have very slow rates of Ca(2+) dissociation and are prone to becoming saturated with Ca(2+), eventually losing their buffering capability within the constantly beating heart. In order for PV to have a more therapeutic potential in the heart, a PV with faster rates of calcium dissociation and high Mg(2+) affinity is needed. We demonstrate that at 35°C, rat ß-PV has an ~30-fold faster rate of Ca(2+) dissociation compared to rat skeletal muscle α-PV, and still possesses a physiologically relevant Ca(2+) affinity (~100 nM). However, rat ß-PV will not be a delayed Ca(2+) buffer since its Mg(2+) affinity is too low (~1 mM). We have engineered two mutations into rat ß-PV, S55D and E62D, when observed alone increase Mg(2+) affinity up to fivefold, but when combined increase Mg(2+) affinity ~13-fold, well within a physiologically relevant affinity. Furthermore, the Mg(2+) dissociation rate (172/s) from the engineered S55D, E62D PV is slow enough for delayed Ca(2+) buffering. Additionally, the engineered PV retains a high Ca(2+) affinity (132 nM) and fast rate of Ca(2+) dissociation (64/s). These PV design strategies hold promise for the development of new therapies to remediate relaxation abnormalities in different heart diseases and heart failure.

10.
Nurs Stand ; 21(27): 44-7, 2007.
Article in English | MEDLINE | ID: mdl-17390946

ABSTRACT

The introduction of Project 2000 raised the stature of nursing education to that of the university-based training for other healthcare professionals. Historically, nursing workforce needs have been satisfied by the manipulation of the requirements to enter training, different levels of training and by the recruitment of trained nurses from abroad. This article examines issues regarding the level of training and education required to enable nurses to be fit for practice.


Subject(s)
Education, Nursing, Baccalaureate/organization & administration , Health Services Needs and Demand/organization & administration , Nurse's Role , Nursing Staff , Nursing, Practical , Personnel Selection/organization & administration , Clinical Competence/standards , Foreign Professional Personnel/education , Foreign Professional Personnel/supply & distribution , Humans , International Educational Exchange , Licensure, Nursing , Nursing Administration Research , Nursing Assistants/education , Nursing Assistants/organization & administration , Nursing Staff/education , Nursing Staff/organization & administration , Nursing, Practical/education , Nursing, Practical/organization & administration , Registries , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...