Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 80: 42-46, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33096418

ABSTRACT

PURPOSE: To evaluate eXaSkin, a novel high-density bolus alternative to commercial tissue-equivalent Superflab, for 6MV photon-beam radiotherapy. MATERIALS AND METHODS: We delivered a 10 × 10 cm2 open field at 90° and head-and-neck clinical plan, generated with the volumetric modulated arc therapy (VMAT) technique, to an anthropomorphic phantom in three scenarios: with no bolus on the phantom's surface, with Superflab, and with eXaSkin. In each scenario, we measured dose to a central planning target volume (PTV) in the nasopharynx region with an ionization chamber, and we measured dose to the skin, at three different positions within the vicinity of a neck lymph node PTV, with MOSkin™, a semiconductor dosimeter. Measurements were compared against calculations with the treatment planning system (TPS). RESULTS: For the static field, MOSkin results underneath the eXaSkin were in agreement with calculations to within 1.22%; for VMAT, to within 5.68%. Underneath Superflab, those values were 3.36% and 11.66%. The inferior agreement can be explained by suboptimal adherence of Superflab to the phantom's surface as well as difficulties in accurately reproducing its placement between imaging and treatment session. In all scenarios, dose measured at the central target agreed to within 1% with calculations. CONCLUSIONS: eXaSkin was shown to have superior adaptation to the phantom's surface, producing minimal air gaps between the skin surface and bolus, allowing for accurate positioning and reproducibility of set-up conditions. eXaSkin with its high density material provides sufficient build-up to achieve full skin dose with less material thickness than Superflab.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Reproducibility of Results , X-Rays
2.
J Appl Clin Med Phys ; 21(8): 278-288, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32441884

ABSTRACT

PURPOSE: The PTW microDiamond has an enhanced spatial resolution when operated in an edge-on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS-483 code of practice for small field dosimetry. In this work the suitability of an edge-on orientation and advantages over the recommended face-on orientation will be presented. METHODS: The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge-on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. RESULTS: The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge-on orientation overresponds in the build-up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge-on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge-on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. CONCLUSIONS: The microDiamond was shown to be suitable for small field dosimetry when operated in edge-on orientation. When edge-on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.


Subject(s)
Particle Accelerators , Radiometry , Humans , Phantoms, Imaging , Photons , Water
3.
Med Phys ; 47(1): 213-222, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31680274

ABSTRACT

PURPOSE: Microbeam radiation therapy (MRT) is an emerging radiation oncology modality ideal for treating inoperable brain tumors. MRT employs quasi-parallel beams of low-energy x rays produced from modern synchrotrons. A tungsten carbide multislit collimator (MSC) spatially fractionates the broad beam into rectangular beams. In this study, the MSC creates beams 50 µm wide ("peaks") separated by a center-to-center distance of 400 µm ("valleys"). The peak to valley dose ratio (PVDR) is of critical importance to the efficacy of MRT. The underlying radiobiological advantage of MRT relies on high peak dose for tumor control and low valley dose for healthy tissue sparing. Cardio synchronous brain motion of the order 100-200 µm is comparable to microbeam width and spacing. The motion can have a detrimental effect on the PVDR, full width at half maximum (FWHM) of the microbeams, and ultimately the dose distribution. We present the first experimental measurement of the effect of brain motion on MRT dose distribution. Dosimetry in MRT is difficult due to the high dose rate (up to 15-20 kGy/s) and small field sizes. METHODS: A real-time dosimetry system based on a single silicon strip detector (SSSD) has been developed with spatial resolution ~10 µm. The SSSD was placed in a water-equivalent phantom and scanned through the microbeam distribution. A monodirectional positioning stage reproduced brain motion during the acquisition. Microbeam profiles were reconstructed from the SSSD and compared with Geant4 simulation and radiochromic HD-V2 film. RESULTS: The SSSD is able to reconstruct dose profiles within 2 µm compared to film. When brain motion is applied the SSSD shows a two time increase in FWHM of profiles and 50% reduction in PVDR. This is confirmed by Geant4 and film data. CONCLUSIONS: Motion-induced misalignment and distortion of microbeams at treatment delivery will result in a reduced PVDR and increased irradiation of additional healthy tissue compromising the radiobiological effectiveness of MRT. The SSSD was able to reconstruct dose profiles under motion conditions and predict similar effects on FWHM and PVDR as by the simulation. The SSSD is a simple to setup, real-time detector which can provide time-resolved high spatial resolution dosimetry of microbeams in MRT.


Subject(s)
Brain Neoplasms/radiotherapy , Heart/physiology , Movement , Radiation Dosage , Radiotherapy, Computer-Assisted/methods , Brain Neoplasms/physiopathology , Humans , Monte Carlo Method , Radiotherapy Dosage , Synchrotrons
4.
Sci Rep ; 9(1): 17696, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776395

ABSTRACT

Microbeam Radiation Therapy (MRT) is an emerging cancer treatment modality characterised by the use of high-intensity synchrotron-generated x-rays, spatially fractionated by a multi-slit collimator (MSC), to ablate target tumours. The implementation of an accurate treatment planning system, coupled with simulation tools that allow for independent verification of calculated dose distributions are required to ensure optimal treatment outcomes via reliable dose delivery. In this article we present data from the first Geant4 Monte Carlo radiation transport model of the Imaging and Medical Beamline at the Australian Synchrotron. We have developed the model for use as an independent verification tool for experiments in one of three MRT delivery rooms and therefore compare simulation results with equivalent experimental data. The normalised x-ray spectra produced by the Geant4 model and a previously validated analytical model, SPEC, showed very good agreement using wiggler magnetic field strengths of 2 and 3 T. However, the validity of absolute photon flux at the plane of the Phase Space File (PSF) for a fixed number of simulated electrons was unable to be established. This work shows a possible limitation of the G4SynchrotronRadiation process to model synchrotron radiation when using a variable magnetic field. To account for this limitation, experimentally derived normalisation factors for each wiggler field strength determined under reference conditions were implemented. Experimentally measured broadbeam and microbeam dose distributions within a Gammex RMI457 Solid Water® phantom were compared to simulated distributions generated by the Geant4 model. Simulated and measured broadbeam dose distributions agreed within 3% for all investigated configurations and measured depths. Agreement between the simulated and measured microbeam dose distributions agreed within 5% for all investigated configurations and measured depths.


Subject(s)
Computer Simulation , Dose Fractionation, Radiation , Monte Carlo Method , Radiotherapy, Computer-Assisted/instrumentation , Radiotherapy, Computer-Assisted/methods , Synchrotrons/instrumentation , Electrons , Humans , Magnetic Fields , Phantoms, Imaging , Photons , Software , X-Rays
5.
Phys Med ; 66: 8-14, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31541864

ABSTRACT

The shift from reactor to accelerator based neutron production has created a renewed interested in Boron Neutron Capture Therapy (BNCT). BNCT is reliant upon the favourable uptake of 10B by tumour cells along with the interaction with neutrons to produce high LET fragments (He and Li nuclei) that deposit energy locally within the tumour cells. As with any radiation based treatment, Quality Assurance (QA) is crucial. In particular, Geant4 was used to model and optimise the geometry and packaging of Silicon on Insulator (SOI) microdosimeters for BNCT Quality Assurance purposes in view of experimental measurements at the KUR research reactor, in Japan. In this context, design optimisation pertains to the sensitive volume size and probability of neutron activation. This study has shown conclusively that whilst the materials currently used in the fabrication of silicon based microdosimeters are appropriate, there are changes with respect to the sensitive volume thickness that should be addressed to reduce the number of 'stoppers' in the microdosimeter.


Subject(s)
Boron Neutron Capture Therapy , Radiometry/instrumentation , Silicon , Monte Carlo Method , Quality Control , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...