Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 13(5): e0043122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-35975921

ABSTRACT

HIV-1 integrase (IN) has a noncatalytic function in virion maturation through its binding to the viral RNA genome (gRNA). Class II IN substitutions inhibit IN-gRNA binding and result in the formation of virions with aberrant morphologies marked by mislocalization of the gRNA between the capsid lattice and the lipid envelope. These viruses are noninfectious due to a block at an early reverse transcription stage in target cells. HIV-1 IN utilizes basic residues within its C-terminal domain (CTD) to bind to the gRNA; however, the molecular nature of how these residues mediate gRNA binding and whether other regions of IN are involved remain unknown. To address this, we have isolated compensatory substitutions in the background of a class II IN mutant virus bearing R269A/K273A substitutions within the IN-CTD. We found that the nearby D256N and D270N compensatory substitutions restored the ability of IN to bind gRNA and led to the formation of mature infectious virions. Reinstating the local positive charge of the IN-CTD through individual D256R, D256K, D278R, and D279R substitutions was sufficient to specifically restore IN-gRNA binding and reverse transcription for the IN R269A/K273A as well as the IN R262A/R263A class II mutants. Structural modeling suggested that compensatory substitutions in the D256 residue created an additional interaction interface for gRNA binding, whereas other substitutions acted locally within the unstructured C-terminal tail of IN. Taken together, our findings highlight the essential role of CTD in gRNA binding and reveal the importance of pliable electrostatic interactions between the IN-CTD and the gRNA. IMPORTANCE In addition to its catalytic function, HIV-1 integrase (IN) binds to the viral RNA genome (gRNA) through positively charged residues (i.e., R262, R263, R269, K273) within its C-terminal domain (CTD) and regulates proper virion maturation. Mutation of these residues results in the formation of morphologically aberrant viruses blocked at an early reverse transcription stage in cells. Here we show that compensatory substitutions in nearby negatively charged aspartic acid residues (i.e., D256N, D270N) restore the ability of IN to bind gRNA for these mutant viruses and result in the formation of accurately matured infectious virions. Similarly, individual charge reversal substitutions at D256 as well as other nearby positions (i.e., D278, D279) are all sufficient to enable the respective IN mutants to bind gRNA, and subsequently restore reverse transcription and virion infectivity. Taken together, our findings reveal the importance of highly pliable electrostatic interactions in IN-gRNA binding.


Subject(s)
HIV-1 , RNA, Viral , RNA, Viral/genetics , RNA, Viral/metabolism , Virus Assembly/genetics , Static Electricity , RNA, Guide, Kinetoplastida/metabolism , Aspartic Acid/metabolism , HIV-1/physiology , Virion/genetics , Virion/metabolism , Mutation , Genomics , Lipids
2.
Cell Rep ; 36(2): 109364, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34214467

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Receptors, Virus , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Cell Cycle , Cell Line, Tumor , Chlorocebus aethiops , Gene Expression Profiling , Heparitin Sulfate/metabolism , Humans , Interferon Type I/metabolism , Interferon-Induced Helicase, IFIH1/metabolism , Models, Biological , Protein Binding , Protein Domains , Proteomics , Receptors, Virus/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Internalization , Virus Replication
3.
bioRxiv ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33688646

ABSTRACT

Established in vitro models for SARS-CoV-2 infection are limited and include cell lines of non-human origin and those engineered to overexpress ACE2, the cognate host cell receptor. We identified human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of ACE2. Infection of H522 cells required the SARS-CoV-2 spike protein, though in contrast to ACE2-dependent models, spike alone was not sufficient for H522 infection. Temporally resolved transcriptomic and proteomic profiling revealed alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type-I interferon signaling. Focused chemical screens point to important roles for clathrin-mediated endocytosis and endosomal cathepsins in SARS-CoV-2 infection of H522 cells. These findings imply the utilization of an alternative SARS-CoV-2 host cell receptor which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.

4.
Science ; 371(6535)2021 03 19.
Article in English | MEDLINE | ID: mdl-33542150

ABSTRACT

HIV-1 has high mutation rates and exists as mutant swarms within the host. Rapid evolution of HIV-1 allows the virus to outpace the host immune system, leading to viral persistence. Approaches to targeting immutable components are needed to clear HIV-1 infection. Here, we report that the caspase recruitment domain-containing protein 8 (CARD8) inflammasome senses HIV-1 protease activity. HIV-1 can evade CARD8 sensing because its protease remains inactive in infected cells before viral budding. Premature intracellular activation of the viral protease triggered CARD8 inflammasome-mediated pyroptosis of HIV-1-infected cells. This strategy led to the clearance of latent HIV-1 in patient CD4+ T cells after viral reactivation. Thus, our study identifies CARD8 as an inflammasome sensor of HIV-1, which holds promise as a strategy for the clearance of persistent HIV-1 infection.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , HIV Infections/virology , HIV Protease/metabolism , HIV-1/physiology , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , Pyroptosis , Alkynes/pharmacology , Anti-HIV Agents/pharmacology , Benzoxazines/pharmacology , CARD Signaling Adaptor Proteins/chemistry , CD4-Positive T-Lymphocytes/physiology , CD4-Positive T-Lymphocytes/virology , Caspase 1/metabolism , Cyclopropanes/pharmacology , Enzyme Activation , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Macrophages/physiology , Macrophages/virology , Neoplasm Proteins/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Rilpivirine/pharmacology , THP-1 Cells , Virus Latency
5.
J Virol ; 95(2)2020 12 22.
Article in English | MEDLINE | ID: mdl-33115869

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral ribonucleoprotein complex (vRNP) consisting of a dimeric viral genome and associated proteins, together constituting the viral core. Upon entry into target cells, the viral core undergoes a process termed uncoating, during which CA molecules are shed from the lattice. Although the timing and degree of uncoating are important for reverse transcription and integration, the molecular basis of this phenomenon remains unclear. Using complementary approaches, we assessed the impact of core destabilization on the intrinsic stability of the CA lattice in vitro and fates of viral core components in infected cells. We found that substitutions in CA can impact the intrinsic stability of the CA lattice in vitro in the absence of vRNPs, which mirrored findings from an assessment of CA stability in virions. Altering CA stability tended to increase the propensity to form morphologically aberrant particles, in which the vRNPs were mislocalized between the CA lattice and the viral lipid envelope. Importantly, destabilization of the CA lattice led to premature dissociation of CA from vRNPs in target cells, which was accompanied by proteasomal-independent losses of the viral genome and integrase enzyme. Overall, our studies show that the CA lattice protects the vRNP from untimely degradation in target cells and provide the mechanistic basis of how CA stability influences reverse transcription.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral RNA genome and the associated viral enzymes and proteins, together constituting the viral core. Upon infection of a new cell, viral cores are released into the cytoplasm where they undergo a process termed "uncoating," i.e., shedding of CA molecules from the conical lattice. Although proper and timely uncoating has been shown to be important for reverse transcription, the molecular mechanisms that link these two events remain poorly understood. In this study, we show that destabilization of the CA lattice leads to premature dissociation of CA from viral cores, which exposes the viral genome and the integrase enzyme for degradation in target cells. Thus, our studies demonstrate that the CA lattice protects the viral ribonucleoprotein complexes from untimely degradation in target cells and provide the first causal link between how CA stability affects reverse transcription.


Subject(s)
Capsid/metabolism , Genome, Viral , HIV Integrase/metabolism , HIV-1/physiology , Virus Uncoating , Animals , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Line , Cricetinae , Humans , Mutation , RNA, Viral/metabolism , Reverse Transcription , Viral Core Proteins/metabolism , Virion/genetics , Virion/metabolism
6.
J Pharmacol Exp Ther ; 361(1): 39-50, 2017 04.
Article in English | MEDLINE | ID: mdl-28154014

ABSTRACT

Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is worthy of further exploration.


Subject(s)
Breast Neoplasms/metabolism , Enzyme Inhibitors/pharmacology , Killer Cells, Lymphokine-Activated/drug effects , Killer Cells, Lymphokine-Activated/metabolism , Mitogen-Activated Protein Kinase Phosphatases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Animals , Animals, Genetically Modified , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Dose-Response Relationship, Drug , Enzyme Inhibitors/therapeutic use , Female , HeLa Cells , Hepatocytes/drug effects , Hepatocytes/immunology , Hepatocytes/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/immunology , JNK Mitogen-Activated Protein Kinases/metabolism , Killer Cells, Lymphokine-Activated/immunology , Mitogen-Activated Protein Kinase Phosphatases/immunology , Rats , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...