Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11976, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488250

ABSTRACT

This study determined if 18 days of supplementation with blueberries (BL) compared to placebo (PL) could mitigate muscle soreness and damage and improve inflammation resolution in untrained adults (n = 49, ages 18-50 years) after engaging in a 90-min bout of "weekend warrior" eccentric exercise. The BL freeze dried supplement provided 1 cup of fresh blueberries per day equivalent with 805 mg/day total phenolics and 280 mg/day anthocyanins. Urine levels of eight BL gut-derived phenolics increased after 14- and 18-days supplementation with 83% higher concentrations in BL vs. PL (p < 0.001). The 90-min exercise bout caused significant muscle soreness and damage during 4d of recovery and a decrease in exercise performance with no significant differences between PL and BL. Plasma oxylipins were identified (n = 76) and grouped by fatty acid substrates and enzyme systems. Linoleic acid (LA) oxylipins generated from cytochrome P450 (CYP) (9,10-, 12,13-dihydroxy-9Z-octadecenoic acids) (diHOMEs) were lower in BL vs. PL (treatment effect, p = 0.051). A compositive variable of 9 plasma hydroxydocosahexaenoic acids (HDoHEs) generated from docosahexaenoic acid (DHA, 22:6) and lipoxygenase (LOX) was significantly higher in BL vs. PL (treatment effect, p = 0.008). The composite variable of plasma 14-HDoHE, 17-HDoHE, and the eicosapentaenoic acid (EPA)-derived oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE) (specialized pro-resolving lipid mediators, SPM, intermediates) was significantly higher in BL vs PL (treatment effect, p = 0.014). Pearson correlations showed positive relationships between post-exercise DHA-LOX HDoHEs and SPM intermediates with urine blueberry gut-derived phenolics (r = 0.324, p = 0.023, and r = 0.349, p = 0.015, respectively). These data indicate that 18d intake of 1 cup/day blueberries compared to PL was linked to a reduction in pro-inflammatory diHOMES and sustained elevations in DHA- and EPA-derived anti-inflammatory oxylipins in response to a 90-min bout of unaccustomed exercise by untrained adults.


Subject(s)
Blueberry Plants , Oxylipins , Adult , Humans , Anthocyanins , Myalgia , Anti-Inflammatory Agents , Docosahexaenoic Acids , Eicosapentaenoic Acid
2.
Front Immunol ; 12: 733921, 2021.
Article in English | MEDLINE | ID: mdl-34858397

ABSTRACT

A hallmark of COVID-19 is a hyperinflammatory state associated with severity. Monocytes undergo metabolic reprogramming and produce inflammatory cytokines when stimulated with SARS-CoV-2. We hypothesized that binding by the viral spike protein mediates this effect, and that drugs which regulate immunometabolism could inhibit the inflammatory response. Monocytes stimulated with recombinant SARS-CoV-2 spike protein subunit 1 showed a dose-dependent increase in glycolytic metabolism associated with production of pro-inflammatory cytokines. This response was dependent on hypoxia-inducible factor-1α, as chetomin inhibited glycolysis and cytokine production. Inhibition of glycolytic metabolism by 2-deoxyglucose (2-DG) or glucose deprivation also inhibited the glycolytic response, and 2-DG strongly suppressed cytokine production. Glucose-deprived monocytes rescued cytokine production by upregulating oxidative phosphorylation, an effect which was not present in 2-DG-treated monocytes due to the known effect of 2-DG on suppressing mitochondrial metabolism. Finally, pre-treatment of monocytes with metformin strongly suppressed spike protein-mediated cytokine production and metabolic reprogramming. Likewise, metformin pre-treatment blocked cytokine induction by SARS-CoV-2 strain WA1/2020 in direct infection experiments. In summary, the SARS-CoV-2 spike protein induces a pro-inflammatory immunometabolic response in monocytes that can be suppressed by metformin, and metformin likewise suppresses inflammatory responses to live SARS-CoV-2. This has potential implications for the treatment of hyperinflammation during COVID-19.


Subject(s)
COVID-19/immunology , Metformin/pharmacology , Monocytes/drug effects , Monocytes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...