Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Plants ; 9(1): 45-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36564631

ABSTRACT

Net-zero greenhouse gas (GHG) emissions targets are driving interest in opportunities for biomass-based negative emissions and bioenergy, including from marine sources such as seaweed. Yet the biophysical and economic limits to farming seaweed at scales relevant to the global carbon budget have not been assessed in detail. We use coupled seaweed growth and technoeconomic models to estimate the costs of global seaweed production and related climate benefits, systematically testing the relative importance of model parameters. Under our most optimistic assumptions, sinking farmed seaweed to the deep sea to sequester a gigaton of CO2 per year costs as little as US$480 per tCO2 on average, while using farmed seaweed for products that avoid a gigaton of CO2-equivalent GHG emissions annually could return a profit of $50 per tCO2-eq. However, these costs depend on low farming costs, high seaweed yields, and assumptions that almost all carbon in seaweed is removed from the atmosphere (that is, competition between phytoplankton and seaweed is negligible) and that seaweed products can displace products with substantial embodied non-CO2 GHG emissions. Moreover, the gigaton-scale climate benefits we model would require farming very large areas (>90,000 km2)-a >30-fold increase in the area currently farmed. Our results therefore suggest that seaweed-based climate benefits may be feasible, but targeted research and demonstrations are needed to further reduce economic and biophysical uncertainties.


Subject(s)
Climate Change , Seaweed , Carbon Dioxide , Agriculture/methods , Carbon
3.
Ann Rev Mar Sci ; 13: 343-373, 2021 01.
Article in English | MEDLINE | ID: mdl-32762591

ABSTRACT

The interaction of coral reefs, both chemically and physically, with the surrounding seawater is governed, at the smallest scales, by turbulence. Here, we review recent progress in understanding turbulence in the unique setting of coral reefs-how it influences flow and the exchange of mass and momentum both above and within the complex geometry of coral reef canopies. Flow above reefs diverges from canonical rough boundary layers due to their large and highly heterogeneous roughness and the influence of surface waves. Within coral canopies, turbulence is dominated by large coherent structures that transport momentum both into and away from the canopy, but it is also generated at smaller scales as flow is forced to move around branches or blades, creating wakes. Future work interpreting reef-related observations or numerical models should carefully consider the influence that spatial variation has on momentum and scalar flux.


Subject(s)
Anthozoa/growth & development , Coral Reefs , Models, Theoretical , Seawater/chemistry , Water Movements , Animals
4.
Nat Commun ; 9(1): 2244, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29872073

ABSTRACT

The original version of the Article was missing an acknowledgement of a funding source. The authors acknowledge that A. Safaie and K.Davis were supported by National Science Foundation Award No. 1436254 and G. Pawlak was supported by Award No. 1436522. This omission has now been corrected in the PDF and HTML versions of the Article.

5.
Nat Commun ; 9(1): 1671, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29700296

ABSTRACT

Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (<1 km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in predicting bleaching prevalence and had a mitigating effect, such that a 1 °C increase in daily temperature range would reduce the odds of more severe bleaching by a factor of 33. Our findings suggest that reefs with greater high-frequency temperature variability may represent particularly important opportunities to conserve coral ecosystems against the major threat posed by warming ocean temperatures.


Subject(s)
Anthozoa/physiology , Chlorophyta/physiology , Animals , Coral Reefs , Ecosystem , Hot Temperature , Seasons , Seawater/chemistry , Symbiosis
6.
Sci Rep ; 7: 44586, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28333165

ABSTRACT

A 2 °C increase in global temperature above pre-industrial levels is considered a reasonable target for avoiding the most devastating impacts of anthropogenic climate change. In June 2015, sea surface temperature (SST) of the South China Sea (SCS) increased by 2 °C in response to the developing Pacific El Niño. On its own, this moderate, short-lived warming was unlikely to cause widespread damage to coral reefs in the region, and the coral reef "Bleaching Alert" alarm was not raised. However, on Dongsha Atoll, in the northern SCS, unusually weak winds created low-flow conditions that amplified the 2 °C basin-scale anomaly. Water temperatures on the reef flat, normally indistinguishable from open-ocean SST, exceeded 6 °C above normal summertime levels. Mass coral bleaching quickly ensued, killing 40% of the resident coral community in an event unprecedented in at least the past 40 years. Our findings highlight the risks of 2 °C ocean warming to coral reef ecosystems when global and local processes align to drive intense heating, with devastating consequences.


Subject(s)
Anthozoa/physiology , Coral Reefs , Hot Temperature , Models, Statistical , Animals , China , Climate , Ecosystem , El Nino-Southern Oscillation , Pacific Ocean , Seawater , Stress, Physiological
7.
PLoS Genet ; 9(8): e1003740, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24009528

ABSTRACT

The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Evolution, Molecular , Pigmentation/genetics , Regulatory Sequences, Nucleic Acid/genetics , Sex Differentiation/genetics , Transcription Factors/genetics , Animals , Conserved Sequence/genetics , DNA-Binding Proteins/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Gene Expression Regulation, Developmental , Genetic Variation , Homeodomain Proteins , Mutation , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...