Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Osteoarthr Cartil Open ; 2(4)2020 Dec.
Article in English | MEDLINE | ID: mdl-35392127

ABSTRACT

Objective: Osteoarthritis is a degenerative disease of the joint, affecting over 30 million people in the US1. A key characteristic of OA is chondrocyte hypertrophy, characterized by chondrocyte changes to a more rounded and osteoblastic phenotype, characterized by increased IL-6 and IL-8 secretion2. While there are no cures for OA, treatments focus on mitigating pain and inflammation, the two main symptoms of OA. However, the analgesics, NSAIDS and corticosteroids commonly used, do not target regeneration and have negative side effects. Local anesthetics (LA) can be used as a pain management alternative but are usually short lasting and therefore, not suited for chronic conditions such as OA. Our engineered sustained release local anesthetic construct successfully delivers bupivacaine for an extended period of time3-5. This study is designed to evaluate the effect of the LA system on chondrocytes in an inflammatory OA-like environment. Design: Chondrocytes were cultured with bolus, liposomal, or construct LA and either untreated or treated with TNF-α and IL-1α for 24 hrs, 48 hrs, or 96 hrs. Chondrocyte viability, interleukin-8 (IL-8), interleukin-6 (IL-6), collagenase activity and proteoglycan deposition were assessed. Results: In the presence of the engineered construct, the chondrocytes retained viability and regenerative function. Moreover, the construct allowed for higher initial doses to be used, which promoted more regeneration and decreased inflammation without compromising cellular viability. Conclusions: The construct promotes a less hypertrophic chondrocyte environment while promoting a more anti-inflammatory environment. These two factors are consistent with a less OA progressive environment when using the engineered construct, compared to bolus LA.

3.
J Inflamm Res ; 12: 87-97, 2019.
Article in English | MEDLINE | ID: mdl-30881083

ABSTRACT

PURPOSE: Mesenchymal stromal cells (MSCs) are used to treat various inflammatory conditions. In parallel, to mitigate pain associated with inflammation, analgesics or opioids are prescribed, often with significant side effects. Local anesthetics (LAs) offer a promising alternative to these medications. However, their short duration and negative effects on anti-inflammatory MSCs have limited their therapeutic effectiveness. To mitigate these negative effects and to move toward developing a cotherapy, we engineered a sustained release bupivacaine alginate-liposomal construct that enables up to 4 days of LA release. By encapsulating MSC in alginate (eMSC), we demonstrate that we can further increase drug concentration to clinically relevant levels, without compromising eMSC viability or anti-inflammatory function. MATERIALS AND METHODS: MSCs were freely cultured or encapsulated in alginate microspheres ± TNFα/IFN-γ and were left untreated or dosed with bolus, liposomal, or construct bupivacaine. After 24, 48, and 96 hours, the profiles were assessed to quantify secretory function associated with LA-MSC interactions. To approximate LA exposure over time, a MATLAB model was generated. RESULTS: eMSCs secrete similar levels of IL-6 and prostaglandin E2 (PGE2) regardless of LA modality, whereas free MSCs secrete larger amounts of IL-6 and lower amounts of anti-inflammatory PGE2. Modeling the system indicated that higher doses of LA can be used in conjunction with eMSC while retaining eMSC viability and function. In general, eMSC treated with higher doses of LA secreted similar or higher levels of immunomodulatory cytokines. CONCLUSION: eMSCs, but not free MSC, are protected from LA, regardless of LA modality. Increasing the LA concentration may promote longer and stronger pain mitigation while the protected eMSCs secrete similar, if not higher, immunomodulatory cytokine levels. Therefore, we have developed an approach, using eMSC and the LA construct that can potentially be used to reduce pain as well as improve MSC anti-inflammatory function.

4.
Drug Deliv Transl Res ; 8(1): 226-238, 2018 02.
Article in English | MEDLINE | ID: mdl-29204926

ABSTRACT

Mesenchymal stromal cell (MSC) therapies have become potential treatment options for multiple ailments and traumatic injuries. In the clinical setting, MSC are likely to be co-administered with local anesthetics (LA) which have been shown to have dose- and potency-dependent detrimental effects on the viability and function of cells. We previously developed and characterized a sustained-release LA delivery formulation comprised of alginate-encapsulated liposomal bupivacaine. The current studies were designed to evaluate the effect of this formulation on the secretion of three key MSC regulatory molecules, interleukin 6 (IL-6), prostaglandin E2 (PGE2), and transforming growth factor-beta 1 (TGF-ß1). MSCs were treated with several bupivacaine formulations-bolus, liposome, or alginate-liposome construct (engineered construct)-in the presence or absence of inflammatory stimulus to stimulate an injured tissue environment. Our results indicated that compared to bolus or liposomal bupivacaine, the engineered construct preserved or promoted MSC anti-inflammatory PGE2 secretion; however, the engineered construct did not increase TGF-ß1 secretion. Bupivacaine release profile analyses indicated that mode of drug delivery controlled the LA concentration over time and pathway analysis identified several shared and cytokine-specific molecular mediators for IL-6, PGE2, and TGF-ß1 which could explain differential MSC secretion responses in the presence of bupivacaine. Collectively, these studies support the potential utility of alginate-encapsulated LA constructs for anti-inflammatory cell therapy co-administration and indicate that mode of local anesthetic delivery can significantly alter MSC secretome function.


Subject(s)
Alginates/administration & dosage , Anesthetics, Local/administration & dosage , Bupivacaine/administration & dosage , Mesenchymal Stem Cells/drug effects , Cells, Cultured , Dinoprostone/metabolism , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage , Humans , Interleukin-6/metabolism , Liposomes , Mesenchymal Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Circ Heart Fail ; 7(4): 619-26, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24902740

ABSTRACT

BACKGROUND: Neuregulin-1ß (NRG) is a member of the epidermal growth factor family possessing a critical role in cardiomyocyte development and proliferation. Systemic administration of NRG demonstrated efficacy in cardiomyopathy animal models, leading to clinical trials using daily NRG infusions. This approach is hindered by requiring daily infusions and off-target exposure. Therefore, this study aimed to encapsulate NRG in a hydrogel to be directly delivered to the myocardium, accomplishing sustained localized NRG delivery. METHODS AND RESULTS: NRG was encapsulated in hydrogel, and release over 14 days was confirmed by ELISA in vitro. Sprague-Dawley rats were used for cardiomyocyte isolation. Cells were stimulated by PBS, NRG, hydrogel, or NRG-hydrogel (NRG-HG) and evaluated for proliferation. Cardiomyocytes demonstrated EdU (5-ethynyl-2'-deoxyuridine) and phosphorylated histone H3 positivity in the NRG-HG group only. For in vivo studies, 2-month-old mice (n=60) underwent left anterior descending coronary artery ligation and were randomized to the 4 treatment groups mentioned. Only NRG-HG-treated mice demonstrated phosphorylated histone H3 and Ki67 positivity along with decreased caspase-3 activity compared with all controls. NRG was detected in myocardium 6 days after injection without evidence of off-target exposure in NRG-HG animals. At 2 weeks, the NRG-HG group exhibited enhanced left ventricular ejection fraction, decreased left ventricular area, and augmented borderzone thickness. CONCLUSIONS: Targeted and sustained delivery of NRG directly to the myocardial borderzone augments cardiomyocyte mitotic activity, decreases apoptosis, and greatly enhances left ventricular function in a model of ischemic cardiomyopathy. This novel approach to NRG administration avoids off-target exposure and represents a clinically translatable strategy in myocardial regenerative therapeutics.


Subject(s)
Bioengineering/methods , Cardiomyopathies/drug therapy , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Myocardial Ischemia/drug therapy , Myocytes, Cardiac/pathology , Neuregulin-1/administration & dosage , Ventricular Function, Left/drug effects , Animals , Animals, Newborn , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cell Proliferation , Cells, Cultured , Delayed-Action Preparations , Disease Models, Animal , Immunohistochemistry , Injections , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Myocardium , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...