Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(2): e89133, 2014.
Article in English | MEDLINE | ID: mdl-24586547

ABSTRACT

The fundamental importance of the proteoglycan versican to early heart formation was clearly demonstrated by the Vcan null mouse called heart defect (hdf). Total absence of the Vcan gene halts heart development at a stage prior to the heart's pulmonary/aortic outlet segment growth. This creates a problem for determining the significance of versican's expression in the forming valve precursors and vascular wall of the pulmonary and aortic roots. This study presents data from a mouse model, Vcan ((tm1Zim)), of heart defects that results from deletion of exon 7 in the Vcan gene. Loss of exon 7 prevents expression of two of the four alternative splice forms of the Vcan gene. Mice homozygous for the exon 7 deletion survive into adulthood, however, the inability to express the V2 or V0 forms of versican results in ventricular septal defects, smaller cushions/valve leaflets with diminished myocardialization and altered pulmonary and aortic outflow tracts. We correlate these phenotypic findings with a large-scale differential protein expression profiling to identify compensatory alterations in cardiac protein expression at E13.5 post coitus that result from the absence of Vcan exon 7. The Vcan ((tm1Zim)) hearts show significant changes in the relative abundance of several cytoskeletal and muscle contraction proteins including some previously associated with heart disease. These alterations define a protein fingerprint that provides insight to the observed deficiencies in pre-valvular/septal cushion mesenchyme and the stability of the myocardial phenotype required for alignment of the outflow tract with the heart ventricles.


Subject(s)
Gene Expression Regulation , Heart/anatomy & histology , Myocardium/cytology , Myocardium/metabolism , Versicans/genetics , Animals , Aorta/cytology , Aorta/pathology , Extracellular Matrix/metabolism , Female , Heart Septal Defects/genetics , Heart Septal Defects/metabolism , Heart Septal Defects/pathology , Heart Valves/cytology , Heart Valves/pathology , Mice , Myocardium/pathology , Pregnancy , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Versicans/metabolism
2.
Photochem Photobiol ; 85(1): 341-6, 2009.
Article in English | MEDLINE | ID: mdl-19161398

ABSTRACT

Photodynamic therapy (PDT) is FDA-approved for use in patients with Barrett's esophagus using porfimer sodium (2 mg per kg) and a recommended light dose of 130 J cm(-1) for high grade dysplasia. Despite uniform drug and light doses, the clinical outcome of PDT is variable. A significant number of PDT cases result in esophageal strictures, a side effect related to excessive energy absorption. The purpose of this project was to model esophageal stricture formation with a Monte Carlo simulation. An original multilayer Monte Carlo computer simulation was developed for esophageal PDT. Optical absorption and scattering coefficients were derived for mucosal and muscle layers of normal porcine esophagus. Porfimer sodium was added to each layer by increasing the absorption coefficient by the appropriate amount. A threshold-absorbed light dose was assumed to be required for stricture formation and ablation. The simulation predicted irreversible damage to the mucosa with a 160 J cm(-1) light dose and damage to the muscle layer with an additional 160 J cm(-1) light dose for a tissue porfimer sodium content of 3.5 mg kg(-1). The simulation accurately modeled photodynamic stricture formation in normal pig in vivo esophageal tissue. This preliminary work suggests that the absorbed light threshold for stricture formation may be between 2 and 4 J per gram of tissue.


Subject(s)
Esophagus/radiation effects , Models, Biological , Sus scrofa , Animals , Diffusion , Esophagus/drug effects , Monte Carlo Method , Photochemotherapy , Photosensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...