Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Ecol Appl ; 33(1): e2726, 2023 01.
Article in English | MEDLINE | ID: mdl-36053865

ABSTRACT

We conducted a range-wide investigation of the dynamics of site-level reproductive rate of northern spotted owls using survey data from 11 study areas across the subspecies geographic range collected during 1993-2018. Our analytical approach accounted for imperfect detection of owl pairs and misclassification of successful reproduction (i.e., at least one young fledged) and contributed further insights into northern spotted owl population ecology and dynamics. Both nondetection and state misclassification were important, especially because factors affecting these sources of error also affected focal ecological parameters. Annual probabilities of site occupancy were greatest at sites with successful reproduction in the previous year and lowest for sites not occupied by a pair in the previous year. Site-specific occupancy transition probabilities declined over time and were negatively affected by barred owl presence. Overall, the site-specific probability of successful reproduction showed substantial year-to-year fluctuations and was similar for occupied sites that did or did not experience successful reproduction the previous year. Site-specific probabilities for successful reproduction were very small for sites that were unoccupied the previous year. Barred owl presence negatively affected the probability of successful reproduction by northern spotted owls in Washington and California, as predicted, but the effect in Oregon was mixed. The proportions of sites occupied by northern spotted owl pairs showed steep, near-monotonic declines over the study period, with all study areas showing the lowest observed levels of occupancy to date. If trends continue it is likely that northern spotted owls will become extirpated throughout large portions of their range in the coming decades.


Subject(s)
Strigiformes , Animals , Probability , Reproduction , Oregon , Washington
2.
PLoS One ; 17(3): e0265175, 2022.
Article in English | MEDLINE | ID: mdl-35298506

ABSTRACT

Accessibility of multispectral, multitemporal imagery combined with recent advances in cloud computing and machine learning approaches have enhanced our ability to model habitat characteristics across broad spatial and temporal scales. We integrated a large dataset of known nest and roost sites of a threatened species, the Mexican spotted owl (Strix occidentalis lucida), in the southwestern USA with Landsat imagery processed using the Continuous Change Detection and Classification (CCDC) time series algorithm on Google Earth Engine. We then used maximum entropy modeling (Maxent) to classify the landscape into four 'spectral similarity' classes that reflected the degree to which 30-m pixels contained a multispectral signature similar to that found at known owl nest/roost sites and mapped spectral similarity classes from 1986-2020. For map interpretation, we used nationally consistent forest inventory data to evaluate the structural and compositional characteristics of each spectral similarity class. We found a monotonic increase of structural characteristics typically associated with owl nesting and roosting over classes of increasing similarity, with the 'very similar' class meeting or exceeding published minimum desired management conditions for owl nesting and roosting. We also found an increased rate of loss of forest vegetation typical of owl nesting and roosting since the beginning of the 21st century that can be partly attributed to increased frequency and extent of large (≥400 ha) wildfires. This loss resulted in a 38% reduction over the 35-year study period in forest vegetation most similar to that used for owl nesting and roosting. Our modelling approach using cloud computing with time series of Landsat imagery provided a cost-effective tool for landscape-scale, multidecadal monitoring of vegetative components of a threatened species' habitat. Our approach could be used to monitor trends in the vegetation favored by any other species, provided that high-quality location data such as we presented here are available.


Subject(s)
Endangered Species , Strigiformes , Animals , Conservation of Natural Resources/methods , Ecosystem , Forests
3.
PeerJ ; 9: e11670, 2021.
Article in English | MEDLINE | ID: mdl-34434640

ABSTRACT

BACKGROUND: Many mammalian species have experienced range contractions. Following a reduction in distribution that has resulted in apparently small and disjunct populations, the Humboldt marten (Martes caurina humboldtensis) was recently designated as federally Threatened and state Endangered. This subspecies of Pacific marten occurring in coastal Oregon and northern California, also known as coastal martens, appear unlike martens that occur in snow-associated regions in that vegetation associations appear to differ widely between Humboldt marten populations. We expected current distributions represent realized niches, but estimating factors associated with long-term occurrence was challenging for this rare and little-known species. Here, we assessed the predicted contemporary distribution of Humboldt martens and interpret our findings as hypotheses correlated with the subspecies' niche to inform strategic conservation actions. METHODS: We modeled Humboldt marten distribution using a maximum entropy (Maxent) approach. We spatially-thinned 10,229 marten locations collected from 1996-2020 by applying a minimum distance of 500-m between locations, resulting in 384 locations used to assess correlations of marten occurrence with biotic and abiotic variables. We independently optimized the spatial scale of each variable and focused development of model variables on biotic associations (e.g., hypothesized relationships with forest conditions), given that abiotic factors such as precipitation are largely static and not alterable within a management context. RESULTS: Humboldt marten locations were positively associated with increased shrub cover (salal (Gautheria shallon)), mast producing trees (e.g., tanoak, Notholithocarpus densiflorus), increased pine (Pinus sp.) proportion of total basal area, annual precipitation at home-range spatial scales, low and high amounts of canopy cover and slope, and cooler August temperatures. Unlike other recent literature, we found little evidence that Humboldt martens were associated with old-growth structural indices. This case study provides an example of how limited information on rare or lesser-known species can lead to differing interpretations, emphasizing the need for study-level replication in ecology. Humboldt marten conservation would benefit from continued survey effort to clarify range extent, population sizes, and fine-scale habitat use.

4.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34282032

ABSTRACT

Changes in the distribution and abundance of invasive species can have far-reaching ecological consequences. Programs to control invaders are common but gauging the effectiveness of such programs using carefully controlled, large-scale field experiments is rare, especially at higher trophic levels. Experimental manipulations coupled with long-term demographic monitoring can reveal the mechanistic underpinnings of interspecific competition among apex predators and suggest mitigation options for invasive species. We used a large-scale before-after control-impact removal experiment to investigate the effects of an invasive competitor, the barred owl (Strix varia), on the population dynamics of an iconic old-forest native species, the northern spotted owl (Strix occidentalis caurina). Removal of barred owls had a strong, positive effect on survival of sympatric spotted owls and a weaker but positive effect on spotted owl dispersal and recruitment. After removals, the estimated mean annual rate of population change for spotted owls stabilized in areas with removals (0.2% decline per year), but continued to decline sharply in areas without removals (12.1% decline per year). The results demonstrated that the most substantial changes in population dynamics of northern spotted owls over the past two decades were associated with the invasion, population expansion, and subsequent removal of barred owls. Our study provides experimental evidence of the demographic consequences of competitive release, where a threatened avian predator was freed from restrictions imposed on its population dynamics with the removal of a competitively dominant invasive species.


Subject(s)
Animal Distribution , Introduced Species , Strigiformes/physiology , Animals , Ecosystem , Northwestern United States , Population Dynamics
5.
Ecol Appl ; 29(3): e01861, 2019 04.
Article in English | MEDLINE | ID: mdl-30835921

ABSTRACT

Slow ecological processes challenge conservation. Short-term variability can obscure the importance of slower processes that may ultimately determine the state of a system. Furthermore, management actions with slow responses can be hard to justify. One response to slow processes is to explicitly concentrate analysis on state dynamics. Here, we focus on identifying drivers of Northern Spotted Owl (Strix occidentalis caurina) territorial occupancy dynamics across 11 study areas spanning their geographic range and forecasting response to potential management actions. Competition with Barred Owls (Strix varia) has increased Spotted Owl territory extinction probabilities across all study areas and driven recent declines in Spotted Owl populations. Without management intervention, the Northern Spotted Owl subspecies will be extirpated from parts of its current range within decades. In the short term, Barred Owl removal can be effective. Over longer time spans, however, maintaining or improving habitat conditions can help promote the persistence of northern spotted owl populations. In most study areas, habitat effects on expected Northern Spotted Owl territorial occupancy are actually greater than the effects of competition from Barred Owls. This study suggests how intensive management actions (removal of a competitor) with rapid results can complement a slower management action (i.e., promoting forest succession).


Subject(s)
Strigiformes , Animals , Conservation of Natural Resources , Data Collection , Ecosystem , Forests
6.
PLoS One ; 14(1): e0210865, 2019.
Article in English | MEDLINE | ID: mdl-30703124

ABSTRACT

Forest management guidelines for rare or declining species in the Pacific Northwest, USA, include both late successional reserves and specific vegetation management criteria. However, whether current management practices for well-studied species such as northern spotted owls (Strix occidentallis caurina) can aid in conserving a lesser known subspecies-Humboldt martens (Martes caurina humboldtensis)-is unclear. To address the lack of information for martens in coastal Oregon, USA, we quantified vegetation characteristics at locations used by Humboldt martens and spotted owls in two regions (central and southern coast) and at two spatial scales (the site level summarizing extensive vegetation surveys and regionally using remotely sensed vegetation and estimated habitat models). We estimated amount of predicted habitat for both species in established reserves. If predicted overlap in established reserves was low, then we reported vegetation characteristics to inform potential locations for reserves or management opportunities. In the Central Coast, very little overlap existed in vegetation characteristics between Humboldt martens and spotted owls at either the site or regional level. Humboldt martens occurred in young forests composed of small diameter trees with few snags or downed logs. Humboldt martens were also found in areas with very dense vegetation when overstory canopy and shrub cover percentages were combined. In the South Coast, Humboldt martens occurred in forests with smaller diameter trees than spotted owl sites on average. Coastal Humboldt martens may use stands of predicted high quality spotted owl habitat in the Pacific Northwest. Nonetheless, our observations suggest that coastal Humboldt martens exist in areas that include a much higher diversity of conifer size classes as long as extensive dense shrub cover, predominantly in the form of high salal and evergreen huckleberry, are available. We suggest that managers consider how structural characteristics (e.g., downed logs, shrub cover, patch size), are associated with long-term species persistence rather than relying on reserves based on broad cover types. Describing vegetation may partially describe suitability, but available prey or predation risk ultimately influence likelihood of individual Humboldt marten use. Guidelines for diversifying vegetation management, and retaining or restoring appropriate habitat conditions at both the stand level and regionally, may increase management flexibility and identify forest conditions that support both spotted owls and Humboldt martens.


Subject(s)
Conservation of Natural Resources/methods , Endangered Species , Forests , Mustelidae/physiology , Strigiformes/physiology , Animals , Oregon , Plants
7.
PLoS One ; 14(1): e0210643, 2019.
Article in English | MEDLINE | ID: mdl-30640947

ABSTRACT

The northern spotted owl (Strix occidentalis caurina) was listed as threatened under the U.S. Endangered Species Act (ESA) in 1990. We applied modern spatial conservation theory and models to evaluate several candidate critical habitat networks, and sought an efficient conservation solution that encompassed the highest value lands for spotted owl recovery rather than maximizing the total area of potential critical habitat. We created a map of relative habitat suitability, which served as input to the spatial conservation prioritization program Zonation. We used the spatially-explicit individual-based population model HexSim to estimate and compare simulated spotted owl population outcomes among a suite of candidate critical habitat networks that varied in size and spatial arrangement under alternative scenarios of future habitat suitability and barred owl (S. varia) effects. We evaluated simulated spotted owl population outcomes, including total population size, and extinction and quasi-extinction likelihoods for 108 combinations of candidate critical habitat networks by habitat change by barred owl scenarios, both range-wide and within 11 distinct portions of the owl's range. Barred owl encounter rates and the amount and suitability of habitat had substantial effects on simulated spotted owl populations. When barred owl encounter rates were high, changes in the amount and suitability of habitat had minimal impacts on population performance. Under lowered barred owl encounter rates, candidate critical habitat networks that included most existing high suitability habitat supported a high likelihood of long-term population persistence. Barred owls are currently the primary driving force behind poor population performance of NSOs; however, our models demonstrated that a sufficient area of high suitability habitat remains essential for recovery when effects of barred owls can be reduced. The modeling approach we employed is sufficiently flexible to incorporate new information about spotted owls as it becomes available and could likely be applied to conservation planning for other species.


Subject(s)
Conservation of Natural Resources/legislation & jurisprudence , Endangered Species/legislation & jurisprudence , Strigiformes , Animals , Ecosystem
8.
PLoS One ; 13(8): e0201720, 2018.
Article in English | MEDLINE | ID: mdl-30071083

ABSTRACT

Landscape genetics investigations examine how the availability and configuration of habitat influence genetic structure of plants and animals. We used landscape genetics to evaluate the role that forest connectivity plays in determining genetic structure of the federally-threatened Northern Spotted Owl (Strix occidentalis caurina) using genotypes of 339 Northern Spotted Owls obtained for 10 microsatellite loci. Spatial clustering analyses identified a distinct genetic cluster at the southern extent of the region examined. This cluster could not be linked to landscape connectivity patterns and suggested that post-Pleistocene processes were involved with its development rather than contemporary landscape configuration. We also compared matrices of pairwise inter-individual genetic distances with resistance distances derived from a circuit-theory based framework. Resistance distances were obtained for an idealized raster map that reflected continuous unimpeded dispersal habitat across the landscape along with five empirically-derived raster maps reflecting the 1870's, 1940's, 1986, 1994, and 2012. Resistance distances from the idealized map served as surrogates for linear geographic distances. Relative to idealized conditions, resistance distances were ~250% higher in the 1940's and ~200% higher from 1986 onward. Resistance distances from the 1870's were ~40% higher than idealized conditions. Inter-individual genetic distances were most highly correlated with resistance distances from the idealized map rather than any of the empirical maps. Two hypotheses explain our results. First, our results may reflect temporal lags between the onset of large-scale habitat alterations and their novel effects on genetic structure in long-lived species such as Northern Spotted Owls. Second, because Northern Spotted Owls disperse over long distances, our results may indicate that forest habitat has never been sufficiently fragmented to the point where connectivity was disrupted. The second hypothesis could indicate that forest management practices mandated by the Northwest Forest Plan succeeded with one of its primary goals. However, our results do not represent a complete portrayal of the status of Northern Spotted Owls given detection of significant population declines and bottlenecks in other studies. Future investigations based on computer simulations may help distinguish between hypotheses.


Subject(s)
Strigiformes/genetics , Animals , Conservation of Natural Resources , Ecosystem , Multigene Family/genetics , Spatial Analysis
9.
Ecology ; 98(6): 1640-1650, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28369775

ABSTRACT

There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture-recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection-nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection-nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection-nondetection data (1995-2014) with newly collected count data (2015-2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.


Subject(s)
Models, Theoretical , Population Dynamics , Animals , Demography , Northwestern United States , Strigiformes
10.
Ecology ; 95(2): 265-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24669721

ABSTRACT

The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition's importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading species (Barred Owl, Strix varia) and a resident species (Northern Spotted Owl, Strix occidentalis caurina) in a 1000-km study area over a 22-year period. Past studies of these competitors have focused on the dynamics of one species at a time, hindering efforts to parse out the roles of habitat and competition and to forecast the future of the resident species. In addition, while these studies accounted for the imperfect detection of the focal species, no multi-season analysis of these species has accounted for the imperfect detection of the secondary species, potentially biasing inference. We analyzed survey data using models that combine the general multistate-multi-season occupancy modeling framework with autologistic modeling, allowing us to account for important aspects of our study system. We found that local extinction probability increases for each species when the other is present; however, the effect of the invader on the resident is greater. Although the species prefer different habitats, these habitats are highly correlated at the patch scale, and the impacts of invader on the resident are greatest in patches that would otherwise be optimal. As a consequence, competition leads to a weaker relationship between habitat and Northern Spotted Owl occupancy. Colonization and extinction rates of the invader are closely related to neighborhood occupancy, and over the first half of the study the availability of colonists limited the rate of population growth. Competition is likely to exclude the resident species, both through its immediate effects on local extinction and by indirectly lowering colonization rates as Northern Spotted Owl occupancy declines. Our analysis suggests that dispersal limitation affects both the invasion dynamics and the scale at which the effects of competition are observed. We also provide predictions regarding the potential costs and benefits of managing Barred Owl populations at different target levels.


Subject(s)
Conservation of Natural Resources , Ecosystem , Strigiformes/classification , Animals , Demography , Extinction, Biological , Models, Biological , Species Specificity , Strigiformes/physiology
11.
Ecology ; 93(8): 1953-66, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22928423

ABSTRACT

In this paper, we modify dynamic occupancy models developed for detection-nondetection data to allow for the dependence of local vital rates on neighborhood occupancy, where neighborhood is defined very flexibly. Such dependence of occupancy dynamics on the status of a relevant neighborhood is pervasive, yet frequently ignored. Our framework permits joint inference about the importance of neighborhood effects and habitat covariates in determining colonization and extinction rates. Our specific motivation is the recent expansion of the Barred Owl (Strix varia) in western Oregon, USA, over the period 1990-2010. Because the focal period was one of dramatic range expansion and local population increase, the use of models that incorporate regional occupancy (sources of colonists) as determinants of dynamic rate parameters is especially appropriate. We began our analysis of 21 years of Barred Owl presence/nondetection data in the Tyee Density Study Area (TDSA) by testing a suite of six models that varied only in the covariates included in the modeling of detection probability. We then tested whether models that used regional occupancy as a covariate for colonization and extinction outperformed models with constant or year-specific colonization or extinction rates. Finally we tested whether habitat covariates improved the AIC of our models, focusing on which habitat covariates performed best, and whether the signs of habitat effects are consistent with a priori hypotheses. We conclude that all covariates used to model detection probability lead to improved AIC, that regional occupancy influences colonization and extinction rates, and that habitat plays an important role in determining extinction and colonization rates. As occupancy increases from low levels toward equilibrium, colonization increases and extinction decreases, presumably because there are more and more dispersing juveniles. While both rates are affected, colonization increases more than extinction decreases. Colonization is higher and extinction is lower in survey polygons with more riparian forest. The effects of riparian forest on extinction rates are greater than on colonization rates. Model results have implications for management of the invading Barred Owl, both through habitat alteration and removal.


Subject(s)
Conservation of Natural Resources , Ecosystem , Strigiformes/physiology , Animals , Demography , Models, Biological , Oregon
12.
Biotechnol Bioeng ; 100(6): 1193-204, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18351681

ABSTRACT

Small molecule additives to cell culture media (e.g., sodium butyrate) that are capable of enhancing the expression of recombinant proteins have significant utility in the production and manufacture of therapeutic polypeptides. To identify novel small molecule enhancers (SMEs) of recombinant protein expression in Chinese Hamster Ovary (CHO) cells, we screened two separate small molecule libraries for compounds capable of enhancing the expression of either a fluorescent reporter protein or a monoclonal antibody. Several compounds that increased recombinant protein expression were identified, and these compounds fell into three broad classes: (1) aromatic carboxylic acids, (2) hydroxamic acids, and (3) acetamides. We examined the impact of SME addition to CHO cell cultures expressing different classes of recombinant proteins including monoclonal antibodies (MAbs). For CHO cell pools or clones grown in production shake-flasks or bioreactors, recombinant protein titers up to 60% higher than control cultures were observed. Analysis of mRNA levels suggest that transcriptional activation plays a role in the expression enhancement seen for some SMEs, but other mechanisms may be involved for at least one compound. Finally, we tested many of the identified SMEs for their ability to increase MAb production by a hybridoma cell line. Hexanohydroxamic acid increased shake-flask MAb production by 40% relative to a control. Taken together, these data demonstrate the potential utility of the compounds in the production of therapeutically relevant proteins from diverse cell-based production systems.


Subject(s)
Acetamides/pharmacology , Antibodies, Monoclonal/biosynthesis , Hydrocarbons, Aromatic/pharmacology , Hydroxamic Acids/pharmacology , Recombinant Fusion Proteins/biosynthesis , Animals , Antibodies, Monoclonal/analysis , Bioreactors , CHO Cells , Caproates/pharmacology , Cell Culture Techniques , Cricetinae , Cricetulus , Culture Media , Female , Fluorescent Dyes , Gene Expression/drug effects , Genetic Enhancement/methods , Hybridomas , Recombinant Fusion Proteins/analysis , Transcriptional Activation/drug effects
14.
Chemphyschem ; 4(7): 663-71, 2003 Jul 14.
Article in English | MEDLINE | ID: mdl-12901297

ABSTRACT

The Sun derives its energy from fusion reactions in which hydrogen is transformed into helium. Every time four protons are turned into a helium nucleus, two neutrinos are produced. These neutrinos take only two seconds to reach the surface of the Sun and another eight minutes or so to reach the Earth. Thus, neutrinos tell us what happened in the center of the Sun eight minutes ago. The Sun produces one-third as many neutrinos as predicted by the standard solar model of particle physics. The author's pioneering work proved that nothing was wrong with the experiments or the theory; something was "wrong" with the neutrinos, in the sense that they behave in ways beyond the standard model.

SELECTION OF CITATIONS
SEARCH DETAIL
...