Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(8)2023 04 20.
Article in English | MEDLINE | ID: mdl-37190103

ABSTRACT

Stimulation of hepatic sympathetic nerves increases glucose production and glycogenolysis. Activity of pre-sympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral and ventromedial medulla (VLM/VMM) largely influence the sympathetic output. Increased activity of the sympathetic nervous system (SNS) plays a role in the development and progression of metabolic diseases; however, despite the importance of the central circuits, the excitability of pre-sympathetic liver-related neurons remains to be determined. Here, we tested the hypothesis that the activity of liver-related neurons in the PVN and VLM/VMM is altered in diet-induced obese mice, as well as their response to insulin. Patch-clamp recordings were conducted from liver-related PVN neurons, VLM-projecting PVN neurons, and pre-sympathetic liver-related neurons in the ventral brainstem. Our data demonstrate that the excitability of liver-related PVN neurons increased in high-fat diet (HFD)-fed mice compared to mice fed with control diet. Insulin receptor expression was detected in a population of liver-related neurons, and insulin suppressed the firing activity of liver-related PVN and pre-sympathetic VLM/VMM neurons in HFD mice; however, it did not affect VLM-projecting liver-related PVN neurons. These findings further suggest that HFD alters the excitability of pre-autonomic neurons as well as their response to insulin.


Subject(s)
Diet, High-Fat , Insulins , Mice , Animals , Neurons/metabolism , Liver , Brain , Insulins/metabolism
2.
J Immunol Methods ; 513: 113411, 2023 02.
Article in English | MEDLINE | ID: mdl-36587758

ABSTRACT

BACKGROUND: There are numerous challenges encountered during clinical testing for an immunogenic response to a plasma-derived therapeutic. Distinguishing between antibodies that recognize endogenous versus therapeutic protein can be particularly difficult. This study focused on CSL112 (human plasma-derived apolipoprotein A-I; apoA-I), which is in clinical development for reducing the risk of recurrent major adverse cardiovascular events following acute myocardial infarction. AIM: To develop and validate a high-throughput, highly sensitive and specific assay to detect antibodies to CSL112 that can be used for immunogenicity assessment in large clinical studies. RESULTS: We developed a clinical anti-drug antibody (ADA) assay utilizing an immunoglobulin purification step that improved specificity and drug tolerance, demonstrating that measurement of pre-existing or treatment emergent ADAs was highly dependent on assay format. The Sample Pre-treatment Electrochemiluminescence (ECL; SPECL) assay incorporates a protein A extraction of serum samples before a bridging assay is performed on an ECL platform. The assay is qualitative, sensitive (lower limit of quantification <39 ng/mL) and has a drug tolerance of 0.5 mg/mL in line with U.S. Food and Drug Administration requirements for clinical immunogenicity assays for therapeutic proteins. Importantly, the SPECL assay demonstrated the absence of antibodies to both apoA-I and CSL112 both prior to drug exposure and after repeated dosing across multiple trials (n = 970 subjects). CONCLUSION: The SPECL method has been validated and applied to support the CSL112 preclinical and clinical development program and has broader application to similar protein therapeutics. Attributes of the methodology include high drug tolerance, high sensitivity, selectivity, and precision. This format is amenable to automation providing the high throughput and reduced variability required to support large scale clinical studies that span extended time periods.


Subject(s)
Apolipoprotein A-I , Lipoproteins, HDL , Humans , Antibodies
3.
J Clin Med ; 11(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160081

ABSTRACT

People living with sickle cell disease (SCD) face intermittent acute pain episodes due to vaso-occlusion primarily treated palliatively with opioids. Hemolysis of sickle erythrocytes promotes release of heme, which activates inflammatory cell adhesion proteins on endothelial cells and circulating cells, promoting vaso-occlusion. In this study, plasma-derived hemopexin inhibited heme-mediated cellular externalization of P-selectin and von Willebrand factor, and expression of IL-8, VCAM-1, and heme oxygenase-1 in cultured endothelial cells in a dose-responsive manner. In the Townes SCD mouse model, intravenous injection of free hemoglobin induced vascular stasis (vaso-occlusion) in nearly 40% of subcutaneous blood vessels visualized in a dorsal skin-fold chamber. Hemopexin administered intravenously prevented or relieved stasis in a dose-dependent manner. Hemopexin showed parallel activity in relieving vascular stasis induced by hypoxia-reoxygenation. Repeated IV administration of hemopexin was well tolerated in rats and non-human primates with no adverse findings that could be attributed to human hemopexin. Hemopexin had a half-life in wild-type mice, rats, and non-human primates of 80-102 h, whereas a reduced half-life of hemopexin in Townes SCD mice was observed due to ongoing hemolysis. These data have led to a Phase 1 clinical trial of hemopexin in adults with SCD, which is currently ongoing.

4.
AAPS J ; 22(3): 60, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32185565

ABSTRACT

This article provides a theoretical case-study risk assessment report for a low-risk monoclonal antibody (mAb) therapeutic. In terms of risk, there are considerations around risks to safety, but also risks regarding effects on pharmacokinetics (PK), pharmacodynamics (PD), and efficacy. Much of the discussion in this document is around the risk of immunogenicity incidence. A higher incidence of immunogenicity would necessitate a detailed review of the PK, efficacy and safety in anti-drug antibody (ADA) positive and ADA negative subjects, in order to evaluate potential effects. The publication is intended to provide a framework of some the current thought processes around assessing immunogenicity risk and for building strategies to mitigate those risks. For this example, we have created a hypothetical antibody, ABC-123, targeting a membrane protein on antigen presenting cells, for the treatment of rheumatoid arthritis (RA). This hypothetical antibody therapeutic is provided as an example for the purposes of risk assessment for a low risk molecule, although any application of similar approach would be case by case.


Subject(s)
Antibodies, Monoclonal/immunology , Immunogenetic Phenomena , Animals , Antibodies, Monoclonal/therapeutic use , Humans , Risk Assessment
5.
J Clin Pharmacol ; 54(3): 301-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24122814

ABSTRACT

CSL112 is apoA-I purified from human plasma and reconstituted with phosphatidylcholine (PC) to form high-density lipoprotein (HDL)-particles suitable for infusion. CSL112 is in development for the potential treatment of acute coronary syndromes (ACS) by optimizing cholesterol efflux. This study assesses the pharmacokinetics (PK), safety and tolerability of CSL112. Repeat doses of CSL112 or placebo were administered intravenously once- (3.4 g or 6.8 g) or twice-weekly (3.4 g) to healthy subjects in a placebo-controlled, randomized (3 CSL112: 1 placebo), ascending-dose study (NCT01281774). Twenty-seven subjects received CSL112 and nine received placebo. Study endpoints included plasma apoA-I and PC concentrations and specific PK parameters. CSL112 infusions immediately produced robust increases in apoA-I concentration in a dose-proportional manner, reaching levels higher than observed with currently available or investigational HDL products. After infusion of CSL112, apoA-I levels remained above baseline for approximately 3 days. Multiple infusions of CSL112 were safe and well tolerated with no evidence of major organ toxicity or immunogenicity. CSL112 may provide a novel option to rapidly transport cholesterol from atherosclerotic plaque to the liver and reduce early recurrent events following ACS. The data presented here support continued clinical development of CSL112 in patient populations.


Subject(s)
Apolipoprotein A-I/blood , Lipoproteins, HDL/pharmacokinetics , Adolescent , Adult , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Bilirubin/blood , Female , Humans , Infusions, Intravenous , Lipoproteins, HDL/administration & dosage , Lipoproteins, HDL/adverse effects , Lipoproteins, HDL/blood , Male , Phosphatidylcholines/blood , Platelet Aggregation/drug effects , Young Adult
6.
Vaccine ; 21(9-10): 946-9, 2003 Feb 14.
Article in English | MEDLINE | ID: mdl-12547607

ABSTRACT

Mucosal delivery of inactivated vaccines that are able to elicit protective immune responses against respiratory diseases has been a long time goal of vaccinologists. Such vaccines would enable a more appropriate means of vaccination against respiratory diseases than those currently delivered by a parenteral route. The intranasal delivery of inactivated influenza vaccine plus the ISCOMATRIX (IMX) adjuvant, simply mixed together, was able to induce serum haemagglutination inhibition (HAI) titres in mice far superior to those obtained with unadjuvanted vaccine delivered subcutaneously. Furthermore, the IMX adjuvanted vaccine delivered intranasally induced mucosal IgA responses in the lung, nasal passages and large intestine, together with high levels of serum IgA. Intranasal delivery of IMX adjuvanted influenza vaccine in sheep gave antibody responses in both serum and nasal secretions that surpassed the levels obtained with unadjuvanted vaccine administered subcutaneously. These observations suggest that it may be possible to induce effective immunity to influenza in humans by intranasal vaccination with an IMX adjuvanted inactivated vaccine.


Subject(s)
ISCOMs/administration & dosage , Influenza Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/blood , Female , Immunity, Mucosal , Immunoglobulin A, Secretory/biosynthesis , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Nasal Mucosa/immunology , Sheep , Vaccines, Inactivated/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...