Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Insect Sci ; 3: 1154697, 2023.
Article in English | MEDLINE | ID: mdl-38469478

ABSTRACT

The spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), an invasive planthopper discovered in Pennsylvania, U.S. in 2014, has spread to many surrounding states despite quarantines and control efforts, and further spread is anticipated. A classical (importation) biological control program would contribute to the long-term management of L. delicatula in the eastern U.S. In its native range of China, Anastatus orientalis (Hymenoptera: Eupelmidae), an egg parasitoid, causes significant mortality. Anastatus orientalis consists of multiple haplotypes that differ in important biological parameters. To delineate the physiological host range of A. orientalis Haplotype C, we completed no-choice and choice testing. No-choice testing of non-target eggs from 36 insect species spanning six orders and 18 families showed that physiologically this haplotype of A. orientalis can develop in a variety of host species eggs from the families Coreidae, Fulgoridae, Pentatomidae, and Saturniidae. Ten of the 16 species that were attacked in the no-choice tests were also attacked in the choice tests. The production of progeny on non-target egg masses was significantly lower than on the controls (L. delicatula egg masses run simultaneously) in the no-choice and choice tests. For the non-target species that were attacked and resulted in female wasp progeny, these females were able to produce their own progeny at the same rate as control females that were reared from the L. delicatula eggs. Larger host eggs corresponded to an increased female-biased sex ratio of the progeny, suggesting that gravid females select them for fertilized eggs. Results from these studies suggest that A. orientalis Haplotype C prefers to parasitize L. delicatula egg masses but is capable of developing in some non-target species.

2.
Microbiologyopen ; 6(4)2017 08.
Article in English | MEDLINE | ID: mdl-28677210

ABSTRACT

Human gut microbiome dysbiosis has been associated with the onset of metabolic diseases and disorders. However, the critical factors leading to dysbiosis are poorly understood. In this study, we provide increasing evidence of the association of diet type and body mass index (BMI) and how they relatively influence the taxonomic structure of the gut microbiota with respect to the causation of gut microbiome dysbiosis. The study included randomly selected Alabama residents (n = 81), including females (n = 45) and males (n = 36). The demographics data included age (33 ± 13.3 years), height (1.7 ± 0.11 meters), and weight (82.3 ± 20.6 kg). The mean BMI was 28.3 ± 7.01, equating to an overweight BMI category. A cross-sectional case-control design encompassing the newly recognized effect size approach to bioinformatics analysis was used to analyze data from donated stool samples and accompanying nutrition surveys. We investigated the microbiome variations in the Bacteroidetes-Firmicutes ratio relative to BMI, food categories, and dietary groups at stratified abundance percentages of <20%, 20%, 30%, 40%, 50%, 60%, and ≥70%. We further investigated variation in the Firmicutes and Bacteroidetes phyla composition (at the genus and species level) in relation to BMI, food categories, and dietary groups (Westernized or healthy). The Pearson Correlation coefficient as an indication of effect size across Alpha diversity indices was used to test the hypothesis (H0 ): increased BMI has greater effect on taxonomic diversity than Westernized diet type, (Ha ): increased BMI does not have a greater effect on taxonomic diversity than Westernized diet type. In conclusion, we rejected the (H0 ) as our results demonstrated that Westernized diet type had an effect size of 0.22 posing a greater impact upon the gut microbiota diversity than an increased BMI with an effect size of 0.16. This implied Westernized diet as a critical factor in causing dysbiosis as compared to an overweight or obese body mass index.


Subject(s)
Diet , Feeding Behavior , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Microbiota , Adult , Alabama , Body Mass Index , Case-Control Studies , Computational Biology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...