Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 758: 136010, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34090937

ABSTRACT

Aging is a major risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. TDP-43 proteinopathy is reported to be associated with AD pathology is almost 50% of cases. Our exploratory study examined near end-stage (28 months old) mice selectively driving expression of human TDP-43 in the hippocampus and cortex in an APP/PSEN1 background. We hypothesized that hippocampal neuropathology caused by ß-amyloidosis with TDP-43 proteinopathy induced in this model, resembling the pathology seen in AD cases, manifest with changes in resting state functional connectivity. In vivo magnetic resonance imaging and post-mortem histology were performed on four genotypes: wild type, APP/PSEN1, Camk2a/TDP-43, and Camk2a/TDP-43/APP/PSEN1. Our results revealed loss of functional coupling in hippocampus and amygdala that was associated with severe neuronal loss in dentate gyrus of Camk2a/TDP-43/APP/PSEN1 mice compared to APP/PSEN1 and wild type mice. The loss of cells was accompanied by high background of ß-amyloid plaques with sparse phosphorylated TDP-43 pathology. The survival rate was also reduced in Camk2a/TDP-43/APP/PSEN1 mice compared to other groups. This end-of-life study provides exploratory data to reach a better understanding of the role of TDP-43 hippocampal neuropathology in diseases with co-pathologies of TDP-43 proteinopathy and ß-amyloidosis such as AD and limbic predominant age-related TDP-43 encephalopathy (LATE).


Subject(s)
Aging/pathology , Alzheimer Disease/physiopathology , Hippocampus/pathology , TDP-43 Proteinopathies/physiopathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amygdala/diagnostic imaging , Amygdala/pathology , Amygdala/physiology , Amyloid beta-Protein Precursor/genetics , Animals , Brain Mapping , DNA-Binding Proteins/genetics , Disease Models, Animal , Female , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, Transgenic , Presenilin-1/genetics , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/pathology
2.
Neurosci Lett ; 678: 8-15, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29715546

ABSTRACT

Transactive response DNA-binding protein of 43 kDa (TDP-43) functions as a heterogeneous nuclear ribonucleoprotein and is the major pathological protein in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis/motor neuron disease (ALS/MND). TDP-43 pathology may also be present as a comorbidity in approximately 20-50% of sporadic Alzheimer's disease cases. In a mouse model of MND, full-length TDP-43 increases association with the mitochondria and blocking the TDP-43/mitochondria interaction ameliorates motor dysfunction. Utilizing a proteomics screen, several mitochondrial TDP-43-interacting partners were identified, including voltage-gated anion channel 1 (VDAC1) and prohibitin 2 (PHB2), a crucial mitophagy receptor. Overexpression of TDP-43 led to an increase in PHB2 whereas TDP-43 knockdown reduced PHB2 expression in cells treated with carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inducer of mitophagy. These results suggest that TDP-43 expression contributes to metabolism and mitochondrial function however we show no change in bioenergetics when TDP-43 is overexpressed and knocked down in HEK293T cells. Furthermore, the fusion protein mitofusin 2 (MFN2) interacts in complex with TDP-43 and selective expression of human TDP-43 in the hippocampus and cortex induced an age-dependent change in Mfn2 expression. Mitochondria morphology is altered in 9-month-old mice selectively expressing TDP-43 in an APP/PS1 background compared with APP/PS1 littermates. We further confirmed TDP-43 localization to the mitochondria using immunogold labeled TDP-43 transmission electron microscopy (TEM) and mitochondrial isolation methods There was no increase in full-length TDP-43 localized to the mitochondria in APP/PS1 mice compared to wild-type (littermates); however, using C- and N-terminal-specific TDP-43 antibodies, the N-terminal (27 kDa, N27) and C-terminal (30 kDa, C30) fragments of TDP-43 are greatly enriched in mitochondrial fractions. In addition, when the mitochondrial peptidase (PMPCA) is overexpressed there is an increase in the N-terminal fragment (N27). These results suggest that TDP-43 processing may contribute to metabolism and mitochondrial function.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Mitophagy , Animals , Cerebral Cortex/metabolism , Disease Models, Animal , GTP Phosphohydrolases/metabolism , Hippocampus/metabolism , Hippocampus/ultrastructure , Mice , Mitochondria/ultrastructure , Neurons/metabolism , Neurons/ultrastructure , Prohibitins , Repressor Proteins/metabolism
3.
Neurobiol Dis ; 103: 154-162, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28416393

ABSTRACT

Although the main focus in Alzheimer's disease (AD) has been an investigation of mechanisms causing Aß plaque deposition and tau tangle formation, recent studies have shown that phosphorylated TDP-43 pathology is present in up to 50% of sporadic cases. Furthermore, elevated phosphorylated TDP-43 has been associated with more severe AD pathology. Therefore, we hypothesized that TDP-43 may regulate amyloid-beta precursor protein (APP) trafficking and tau phosphorylation/aggregation. In order to examine the role of TDP-43 in AD, we developed a transgenic mouse that overexpresses hippocampal and cortical neuronal TDP-43 in a mouse expressing familial mutations (K595N and M596L) in APP and presenilin 1 (PSEN1ΔE9). In our model, increased TDP-43 was related to increased tau aggregation as evidenced by thioflavin S-positive phosphorylated tau, which may implicate TDP-43 expression in pre-tangle formation. In addition, there was increased endosomal/lysosomal localization of APP and reduced Aß plaque formation with increased TDP-43. Furthermore, there was decreased calcineurin with elevated TDP-43 expression. Since calcineurin is a phosphatase for TDP-43, the decreased calcineurin expression may be one mechanism leading to an increase in accumulation of diffuse phosphorylated TDP-43 in the hippocampus and cortex. We further show that when TDP-43 is knocked down there is an increase in calcineurin. In our model of selective TDP-43 overexpression in an APP/PSEN1 background, we show that TDP-43 decreases Aß plaque deposition while increasing abnormal tau aggregation. These observations indicate that TDP-43 may play a role in regulating APP trafficking and tau aggregation. Our data suggest that TDP-43 could be a putative target for therapeutic intervention in AD affecting both Aß plaque formation and tauopathy.


Subject(s)
DNA-Binding Proteins/biosynthesis , Plaque, Amyloid/metabolism , Protein Aggregation, Pathological/metabolism , tau Proteins/biosynthesis , Amyloid beta-Protein Precursor/genetics , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Gene Expression , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Presenilin-1/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...