Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Extremophiles ; 24(4): 593-602, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32451688

ABSTRACT

Ferrous iron- and sulfur-oxidizing Acidihalobacter species and similar so far unclassified bacteria have been isolated from the islands of Vulcano (Italy) and Milos (Greece), specifically from where seawater was acidified at sulfide-rich geothermal sites. Acidithiobacillus species which tolerated concentrations of chloride that inhibit most Acidithiobacillus spp. were also isolated from sites on both islands: these were At. thiooxidans strains and an unclassified species, Acidithiobacillus sp. strain V1. The potential of salt-tolerant acidophiles for industrial application in promoting copper extraction from mineral sulfides where chloride is naturally present at concentrations which would inhibit most acidophiles, or where seawater rather than fresh water is available, appears to be limited by the sensitivity of ferrous-iron oxidizing Acidihalobacter spp. to copper. However, tolerance of copper and chloride shown by At. thiooxidans strain A7 suggests it could oxidize sulfur and benefit acid leaching if ferric iron or copper was provided as the primary oxidant of sulfide ores.


Subject(s)
Acidithiobacillus , Ectothiorhodospiraceae , Copper , Greece , Italy , Oxidation-Reduction , Sulfur
2.
Antonie Van Leeuwenhoek ; 111(10): 1967-1968, 2018 10.
Article in English | MEDLINE | ID: mdl-30178162

ABSTRACT

In Table 1 of the original article, the unit mg/L was incorrectly published as ng/L in the aluminum, chloride, sulphate and OM columns.

3.
Antonie Van Leeuwenhoek ; 111(8): 1403-1419, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29748902

ABSTRACT

The endorheic basins of the Northern Chilean Altiplano contain saline lakes and salt flats. Two of the salt flats, Gorbea and Ignorado, have high acidic brines. The causes of the local acidity have been attributed to the occurrence of volcanic native sulfur, the release of sulfuric acid by oxidation, and the low buffering capacity of the rocks in the area. Understanding the microbial community composition and available energy in this pristine ecosystem is relevant in determining the origin of the acidity and in supporting the rationale of conservation policies. Besides, a comparison between similar systems in Australia highlights key microbial components and specific ones associated with geological settings and environmental conditions. Sediment and water samples from the Salar de Gorbea were collected, physicochemical parameters measured and geochemical and molecular biological analyses performed. A low diversity microbial community was observed in brines and sediments dominated by Actinobacteria, Algae, Firmicutes and Proteobacteria. Most of the constituent genera have been reported to be either sulfur oxidizing microorganisms or ones having the potential for sulfur oxidation given available genomic data and information drawn from the literature on cultured relatives. In addition, a link between sulfur oxidation and carbon fixation was observed. In contrast, to acid mine drainage communities, Gorbea microbial diversity is mainly supported by chemolithoheterotrophic, facultative chemolithoautotrophic and oligotrophic sulfur oxidizing populations indicating that microbial activity should also be considered as a causative agent of local acidity.


Subject(s)
Bacteria/classification , Lakes/microbiology , Phylogeny , Salts , Sulfur/metabolism , Bacteria/metabolism , Biodiversity , Carbon Cycle , Chile , DNA, Bacterial/genetics , Energy Metabolism , Geologic Sediments/microbiology , Metagenomics , RNA, Ribosomal, 16S/genetics
4.
Stand Genomic Sci ; 11: 19, 2016.
Article in English | MEDLINE | ID: mdl-26925196

ABSTRACT

Leptospirillum ferriphilum Sp-Cl is a Gram negative, thermotolerant, curved, rod-shaped bacterium, isolated from an industrial bioleaching operation in northern Chile, where chalcocite is the major copper mineral and copper hydroxychloride atacamite is present in variable proportions in the ore. This strain has unique features as compared to the other members of the species, namely resistance to elevated concentrations of chloride, sulfate and metals. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 2,475,669 bp draft genome is arranged into 74 scaffolds of 74 contigs. A total of 48 RNA genes and 2,834 protein coding genes were predicted from its annotation; 55 % of these were assigned a putative function. Release of the genome sequence of this strain will provide further understanding of the mechanisms used by acidophilic bacteria to endure high osmotic stress and high chloride levels and of the role of chloride-tolerant iron-oxidizers in industrial bioleaching operations.

5.
Extremophiles ; 15(2): 155-63, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21308384

ABSTRACT

Some novel actinobacteria from geothermal environments were shown to grow autotrophically with sulfur as an energy source. These bacteria have not been formally named and are referred to here as "Acidithiomicrobium" species, as the first of the acidophilic actinobacteria observed to grow on sulfur. They are related to Acidimicrobium ferrooxidans with which they share a capacity for ferrous iron oxidation. Ribulose bisphosphate carboxylase/oxygenase (RuBisCO) is active in CO(2) fixation by Acidimicrobium ferrooxidans, which appears to have acquired its RuBisCO-encoding genes from the proteobacterium Acidithiobacillus ferrooxidans or its ancestor. This lateral transfer of RuBisCO genes between a proteobacterium and an actinobacterium would add to those noted previously among proteobacteria, between proteobacteria and cyanobacteria and between proteobacteria and plastids. "Acidithiomicrobium" has RuBisCO-encoding genes which are most closely related to those of Acidimicrobium ferrooxidans and Acidithiobacillus ferrooxidans, and has additional RuBisCO genes of a different lineage. 16S rRNA gene sequences from "Acidithiomicrobium" species dominated clone banks of the genes extracted from mixed cultures of moderate thermophiles growing on copper sulfide and polymetallic sulfide ores in ore leaching columns.


Subject(s)
Actinobacteria/metabolism , Oxygen/chemistry , Sulfur/metabolism , Actinobacteria/genetics , Archaea/physiology , Bacterial Physiological Phenomena , Cloning, Molecular , DNA/genetics , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Hydrogen-Ion Concentration , Iron/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Ribulose-Bisphosphate Carboxylase/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...