Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 178: 89-96, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23545342

ABSTRACT

Although a great deal is known about the deposition of fluoride on vegetation, and the hazards associated with uptake by grazing herbivores, little is known about what happens to the concentration of fluoride in vegetation and soil at polluted sites once deposition ceases. The closure of Anglesey Aluminium Metals Ltd smelter, in September 2009, provided a unique opportunity to study fluoride loading once deposition stopped. Fluoride was monitored in plants and soil within 1 km of the former emission source. Fluoride concentrations in a range of plant material had decreased to background levels of 10 mg F kg(-1) after 36 weeks. Concentrations of fluoride in mineral-rich soils decreased steadily demonstrating their limited potential to act as contaminating sources of fluoride for forage uptake. There were significant differences in the rate of decline of fluoride concentrations between plant species.


Subject(s)
Environmental Monitoring , Fluorides/analysis , Metallurgy , Plants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Aluminum , Environmental Pollution/prevention & control , Environmental Pollution/statistics & numerical data
2.
Environ Pollut ; 160(1): 74-81, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22035928

ABSTRACT

Ozone-sensitive and -tolerant individuals of cutleaf coneflower (Rudbeckia laciniata L.) were compared for their gas exchange characteristics and total non-structural carbohydrates at Purchase Knob, a high elevation site in Great Smoky Mountains National Park, USA. Photosynthesis and stomatal conductance decreased with increased foliar stipple. Sensitive plants had lower photosynthetic rates for all leaves, except the very youngest and oldest when compared to tolerant plants. Stomatal conductance decreased with increasing leaf age, but no ozone-sensitivity differences were found. Lower leaves had less starch than upper ones, while leaves on sensitive plants had less than those on tolerant plants. These results show that ambient levels of ozone in Great Smoky Mountains National Park can adversely affect gas exchange, water use efficiency and leaf starch content in sensitive coneflower plants. Persistence of sensitive genotypes in the Park may be due to physiological recovery in low ozone years.


Subject(s)
Air Pollutants/pharmacology , Ozone/pharmacology , Rudbeckia/drug effects , Starch/metabolism , Environmental Monitoring , Gases/metabolism , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Rudbeckia/growth & development , Rudbeckia/metabolism , United States
3.
Inorganica Chim Acta ; 365(1): 484-486, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-23750048

ABSTRACT

The reaction of the Tc(I) complex [Tc(NO)Cl2(HOMe)(PPh3)2] with stoichiometric amounts of 2-mercatopyridine and a proton scavenger yields [Tc(NO)Cl(Spy)(PPh3)2] or [Tc(NO)(Spy)2(PPh3)], depending upon quantities of ligands employed. These two complexes have been structurally characterized. The small bite angles of the bidentate mercaptopyridine ligands cause significant deviation from octahedral coordination geometry.

4.
Photosynth Res ; 87(3): 281-6, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16699918

ABSTRACT

The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.84. However, when leaves with foliar injury (characterized as a purple to brownish stipple on the upper leaf surface affecting more than 6% of the leaf area) were added, likelihood ratio tests showed that it was no longer possible to use the same equation to obtain chlorophyll estimations for both classes of leaves. Either an equation with a common slope or a common intercept was necessary. We suspect several factors are involved in altering the calibration of the SPAD meter for measuring chlorophyll amounts in visibly ozone-injured leaves, with the most likely being changes in either light absorption or scattering resulting from tissue necrosis.


Subject(s)
Chlorophyll/metabolism , Ozone/pharmacology , Plant Diseases , Plant Leaves/drug effects , Rudbeckia/drug effects
5.
Environ Pollut ; 143(3): 427-34, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16460853

ABSTRACT

Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 micromol g(-1) fresh weight) than crown-beard (2-4 micromol g(-1) fresh weight) or cutleaf coneflower (0.5-2 micromol g(-1) fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g(-1) fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity.


Subject(s)
Air Pollutants/toxicity , Asclepias/metabolism , Ascorbic Acid/metabolism , Asteraceae/metabolism , Ozone/toxicity , England , Environmental Monitoring , Humans , Plant Leaves/metabolism , Rudbeckia/metabolism , Seasons , Verbesina/metabolism
6.
Environ Pollut ; 141(1): 175-83, 2006 May.
Article in English | MEDLINE | ID: mdl-16213638

ABSTRACT

The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants.


Subject(s)
Air Pollutants/toxicity , Asclepias , Environmental Monitoring/methods , Oxidants, Photochemical/toxicity , Ozone/toxicity , Plant Leaves , Seasons , North Carolina , Trees , Weather
7.
Cancer Res ; 65(12): 4979-86, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15958536

ABSTRACT

Evaluation of [99mTc]oxotechnetium(V) complexes of the amine-amide-dithiol (AADT) chelates containing tertiary amine substituents as small-molecule probes for the diagnostic imaging of metastatic melanoma has shown that technetium-99m-labeled AADT-(CH2)2-NEt2 (99mTc-1) has the highest tumor uptake and other favorable biological properties. We have, therefore, assessed this agent in a more realistic metastatic melanoma model in which, after i.v. tail injection, a highly invasive melanoma cell line, B16F10, forms pulmonary tumor nodules in normal C57BL6 mice. Small melanotic lesions develop in the lungs and, on histologic examination, appear as small black melanoma colonies, increasing in size and number with time after tumor cell injection. Groups of mice received tumor cell inocula of 2 x 10(5), 4 x 10(5), or 8 x 10(5) B16F10 cells; 14 days later, 2 hours after 99mTc-1 administration, lung uptake of 2.83 +/- 0.21%, 3.63 +/- 1.07%, and 4.92 +/- 1.61% injected dose per gram of tissue (% ID/g), respectively, was observed, compared with normal lung uptake of 2.13 +/- 0.2% ID/g (P < 0.05). Additionally, a higher level of 99mTc-1 accumulation was seen 17 days after tumor cell inoculation as the lung lesions grew. These in vivo studies coupled with additional in vitro and ex vivo assessment show that 99mTc-1 has high and specific uptake in melanoma metastases in lungs and can potentially follow the temporal growth of these tumors.


Subject(s)
Lung Neoplasms/diagnostic imaging , Lung Neoplasms/secondary , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/secondary , Organotechnetium Compounds , Radiopharmaceuticals , Technetium , Animals , In Vitro Techniques , Lung Neoplasms/metabolism , Male , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Organotechnetium Compounds/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Technetium/pharmacokinetics , Tissue Distribution , Tomography, Emission-Computed, Single-Photon
8.
Environ Pollut ; 131(2): 295-303, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15234096

ABSTRACT

Although there has been a great deal of research on ozone, interest in exposure of native, herbaceous species is relatively recent and it is still not clear what role the pollutant has in their ecological fitness. The ozone exposure of a plant is usually expressed in terms of the concentration above the canopy or as a time-weighted index. However, to understand the physiological effects of ozone it is necessary to quantify the ozone flux to individual leaves as they develop, which requires knowing the deposition velocity and concentration of the pollutant as a function of height throughout the plant canopy. We used a high-order closure model of sub-canopy turbulence to estimate ozone profiles in stands of cutleaf coneflower (Rudbeckia laciniata L.) located in the Great Smoky Mountains National Park, USA. The model was run for periods coinciding with a short field study, during which we measured vertical concentration profiles of ozone along with measurements of atmospheric turbulence and other meteorological and plant variables. Predictions of ozone profiles by the model are compared with observations throughout the canopy.


Subject(s)
Air Pollutants/pharmacokinetics , Ozone/pharmacokinetics , Rudbeckia/metabolism , Air Pollutants/analysis , Ecosystem , Environmental Monitoring/methods , Meteorological Concepts , Models, Biological , Ozone/analysis , Plant Leaves/metabolism , Plant Leaves/physiology
9.
Environ Pollut ; 125(1): 3-11, 2003.
Article in English | MEDLINE | ID: mdl-12804822

ABSTRACT

For 30-40 years airborne fluoride, usually in the form of HF or SiF4, was one of the most important and damaging air pollutants affecting forests, crops and natural vegetation. It is much more toxic than most other air pollutants such as O3 or SO2 because injury to the most sensitive species begins when they are exposed to a concentration below 1 ppb (ca. 0.8 microg m(-3)) for a 1- to 3-day period. The long-term threshold concentration is around 0.25-0.30 microg m(-3). Higher concentrations and longer durations of exposure induce much more rapid and extensive injury. However, there is a difference in sensitivity between the most and least sensitive species of around 2-3 orders of magnitude and most species possess a degree of resistance. Dramatic improvements in engineering technology have greatly reduced emissions but because of the high toxicity, cases of vegetation injury are still common, even in developed countries, and cases involving litigation still occur. Therefore there is a continuing need for bioindicators and biomonitoring of fluorides, so this paper reviews the subject, drawing attention to the strengths and limitations of the techniques. Visible symptoms are described and illustrated and tables of relative sensitivity are given and their limitations discussed. Finally, examples of biomonitoring in Europe and the USA are presented.


Subject(s)
Air Pollutants/toxicity , Environmental Monitoring/methods , Fluorides/toxicity , Plants/drug effects , Air Pollutants/metabolism , Europe , Fluorides/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plants/metabolism , United States
10.
Environ Int ; 29(2-3): 181-7, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12676206

ABSTRACT

Workable pollution abatement policies and effective legislation must be based on sound science. However, despite many years of research, there are still uncertainties about the effects of atmospheric nitrogen compounds on crops and other vegetation. This paper reviews the current state of knowledge of the main compounds, focussing on the concentrations and combinations of pollutants that occur in rural areas. The sources, concentrations and effects of oxidised, reduced and organic nitrogen compounds are considered in turn, then the effects of deposited nitrogen on ecosystems are discussed. Research priorities on the effects of deposited nitrogen in Europe and the USA are compared. Finally, the review leads to a list of issues for discussion and recommendations for research.


Subject(s)
Agriculture , Fertilizers , Nitrogen Compounds/adverse effects , Ecosystem , Europe , Plant Development , Research/trends , United States
11.
Environ Int ; 29(2-3): 201-11, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12676208

ABSTRACT

The regulation of the emissions of 'traditional' primary air pollutants (fluorides, sulfur dioxide) has changed the pattern of exposure of ecological systems, with greatly reduced exposure close to sources, but with a smaller effect in some remote areas. Measurements show that recovery is occurring at some sites, in fresh water chemistry (reduced acidity) and in sensitive biota (sustainable fish populations). However, the pattern of change in exposure has not always been simply related to emission reductions. An understanding of responses to recent changes will improve our predictions of the response to future emission changes, both locally and globally. As exposure to 'traditional' pollutants is reduced, the potential for other pollutants to have effects becomes more evident. In the aqueous phase, we need to understand the role of soluble and suspended organics, but this also means explicit recognition of the possibility of phase exchange, and the role of photolytic reactions on plant, soil, and water surfaces. Do highly reactive free radicals in the atmosphere, formed by the action of sunlight on volatile organic compounds, have direct effects on plants? Organic compounds and heavy metals may be bioactive as gases and particles, but for many potentially toxic compounds, the experimental evidence for biotic response is very limited. To evaluate the potential effects of pollutants, we need to understand the pathways by which airborne pollutants enter and react within ecosystems. For vegetation, we have to consider bidirectional fluxes, and distinguish among uptake through stomata, through leaf surfaces, or through roots. There are several challenges for the future. (1) Can we devise experiments that permit exposure of vegetation to gases, particles, and/or aqueous pollutants at 'realistic' concentrations? (2) Can we include the potential interactions with photolytically derived free radicals, and the dynamics of exchange? (3) How do we allow for responses to pollutant mixtures, or the simultaneous exposure to pollutants in gas, particle, and aqueous phases? The recognition of the importance of the dynamic exchange of pollutants between phases will be the key to the development of effective experimental approaches to evaluating cause-effect relationships between pollutant mixtures and ecosystem responses.


Subject(s)
Air Pollutants/adverse effects , Fluorides/adverse effects , Models, Theoretical , Sulfur Dioxide/adverse effects , Free Radicals , Photochemistry , Research/trends , Water/chemistry
12.
Inorg Chem ; 41(24): 6181-3, 2002 Dec 02.
Article in English | MEDLINE | ID: mdl-12444754

ABSTRACT

N-(2-Mercaptoethyl)picolylamine (MEPAH) was studied as a potentially biologically relevant ligand for the "fac-[M(CO)(3)](+)" core (M = Re, (99)Tc, (99m)Tc). To this end, the complex Re(CO)(3)(MEPA) was synthesized. The reaction of MEPAH with fac-[Re(CO)(3)(MeCN)(3)](+) took place over the course of seconds, showing the high affinity possessed by this ligand for the "fac-[Re(CO)(3)](+)" core. A single-crystal X-ray diffraction study was performed confirming the nature of Re(CO)(3)(MEPA), a rare mononuclear rhenium(I) thiolate complex. Additional exploration into derivatization of the ligand backbone has afforded the analogous N-ethyl complex, Re(CO)(3)(MEPA-NEt). The high affinity of the ligand for the metal coupled with the ease of its derivatization implies that utilization of this ligand system for the purposes of (99m)Tc-radiopharmaceutical development is promising.


Subject(s)
Mercaptoethylamines/chemistry , Sulfur Compounds/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray , Ligands , Molecular Conformation , Molecular Structure , Organotechnetium Compounds , Radiopharmaceuticals
13.
Inorg Chem ; 41(22): 5667-74, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12401070

ABSTRACT

The reduction of ammonium pertechnetate with bis(diphenylphosphino)methane (dppm), and with diphenyl-2-pyridyl phosphine (Ph(2)Ppy), has been investigated. The neutral Tc(II) complex, trans-TcCl(2)(dppm)(2) (1), has been isolated from the reaction of (NH(4))[TcO(4)] with excess dppm in refluxing EtOH/HCl. Chemical oxidation with ferricinium hexafluorophosphate results in formation of the cationic Tc(III) analogue, trans-[TcCl(2)(dppm)(2)](PF(6)) (2). The dppm ligands adopt the chelating bonding mode in both complexes, resulting in strained four member metallocycles. With excess PhPpy, the reduction of (NH(4))[TcO(4)] in refluxing EtOH/HCl yields a complex with one chelating Ph(2)Ppy ligand and one unidentate Ph(2)Ppy ligand, mer-TcCl(3)(Ph(2)Ppy-P,N)(Ph(2)Ppy-P) (3). The cationic Tc(III) complexes, trans-[TcCl(2)(Ph(2)P(O)py-N,O)(2)](PF(6)) (4) and trans-[TcCl(2)(dppmO-P,O)(2)](PF(6)) (5) (Ph(2)P(O)py = diphenyl-2-pyridyl phosphine monoxide and dppmO = bis(diphenylphosphino)methane monoxide), have been isolated as byproducts from the reactions of (NH(4))[TcO(4)] with the corresponding phosphine. The products have been characterized in the solid state and in solution via a combination of single-crystal X-ray crystallography and spectroscopic techniques. The solution state spectroscopic results are consistent with the retention of the bonding modes revealed in the crystal structures.


Subject(s)
Phosphines/chemistry , Radiopharmaceuticals/chemistry , Sodium Pertechnetate Tc 99m/chemistry , Chelating Agents , Crystallography, X-Ray , Indicators and Reagents , Ligands , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Radiopharmaceuticals/chemical synthesis , Sodium Pertechnetate Tc 99m/chemical synthesis , Spectrometry, Mass, Fast Atom Bombardment , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
14.
Inorg Chem ; 41(13): 3337-9, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12079449

ABSTRACT

A new route to low-valent technetium complexes containing multiple acetonitrile ligands has been developed. The reduction of TcCl(4)(PPh(3))(2) with zinc metal dust in acetonitrile results in the formation of [Tc(CH(3)CN)(4)(PPh(3))(2)][Zn(2)Cl(6)](1/2). The hexafluorophosphate salt of the analogous Tc(II) cation can be prepared via chemical oxidation of the Tc(I) species, and the Tc(I) cation can be regenerated via chemical reduction. The compounds have been characterized in the solid state via single-crystal X-ray crystallography, and in solution via a combination of spectroscopic techniques and cyclic voltammetry. The structural parameters found in the two complexes are similar to each other; however, the difference in oxidation state is reflected, as expected, in the spectroscopic results. The electrochemical data, obtained from cyclic voltammograms of Tc(CH(3)CN)(4)(PPh(3))(2)](PF(6))(n)() (n = 1,2), mirror the synthetic results in that both compounds possess a reversible redox couple at -0.55 V versus ferrocene, which has been assigned to the Tc(II)/Tc(I) couple.


Subject(s)
Organotechnetium Compounds/chemistry , Phosphines/chemistry , Radiopharmaceuticals/chemistry , Chemistry, Organic/methods , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Organotechnetium Compounds/chemical synthesis , Oxidation-Reduction , Phosphines/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Spectrometry, Mass, Electrospray Ionization , Zinc/chemistry
15.
Inorg Chem ; 37(11): 2701-2716, 1998 Jun 01.
Article in English | MEDLINE | ID: mdl-11670406

ABSTRACT

The reduction of perrhenate, molybdate and pertechnetate with 2-hydrazinopyridine dihydrochloride in methanol has led to the preparation of a class of complexes containing the {M(eta(1)-NNC(5)H(4)NH(x)())(eta(2)-HNNH(y)()C(5)H(4)N)} core, represented by [TcCl(3)(NNC(5)H(4)NH)(HNNC(5)H(4)N)] (2), [ReCl(3)(NNC(5)H(4)NH)(HNNC(5)H(4)N)] (3), and [MoCl(3)(NNC(5)H(4)NH)(HNNHC(5)H(4)N)] (6). The reaction of 3 with NEt(3) results in the formation of [HNEt(3)][[ReCl(3)(NNC(5)H(4)N)(HNNC(5)H(4)N)].H(2)O (4) by deprotonation of the pyridine nitrogen site. Similarly, the reduction of perrhenate with 2-hydrazino-2-imidazoline hydrobromide has led to the preparation of the analogous [ReCl(3)(NNC(3)H(4)N(2)H)(HNNHC(3)H(4)N(2)H)] (5). Reaction of 3 with pyridine-2-thiol and pyrimidine-2-thiol yields two structurally characterized derivatives with a modified {Re(eta(1)-NNC(5)H(4)N)(eta(2)-HNNC(5)H(4)N)} core, [Re(C(5)H(4)NS)(2)(NNC(5)H(4)N)(HNNC(5)H(4)N)] (8) and [Re(C(4)H(3)N(2)S)(2)(NNC(5)H(4)N)(HNNC(5)H(4)N)] (9), respectively. Reaction of 6 with pyrimidine-2-thiol led to the isolation of the analogous [Mo(C(4)H(3)N(2)S)(2)(NNC(5)H(4)N)(HNNHC(5)H(4)N)] (11) and the seven-coordinate monohydrazine core complex [Mo(C(4)H(3)N(2)S)(3)(NNC(5)H(4)N)].CH(2)Cl(2) (12). In similar fashion, the reaction of 2 with pyridine-2-thiol yielded a complex structurally analogous to 8, [Tc(C(5)H(4)NS)(2)(NNC(5)H(4)N)(HNNC(5)H(4)N)] (7). Crystal data for 3, C(10)H(10)Cl(3)N(6)Re: triclinic, P&onemacr;, a = 7.527(2) Å, b = 7.599(2) Å, c = 13.118(3) Å, alpha = 106.55(3) degrees, beta = 90.28(3) degrees, gamma = 93.83(3) degrees, V = 717.4(4) Å(3), Z = 2. For 4, C(16)H(27)Cl(3)N(7)ORe: orthorhombic, P2(1)2(1)2(1), a = 7.503(2) Å, b = 10.3643(2) Å, c = 30.1590(5) Å, V = 2345.20(6) Å(3), Z = 2. For 5, C(6)H(12)Cl(3)N(8)Re: monoclinic, P2(1)/n, a = 9.093(2) Å, b = 11.105(2) Å, c = 14.295(3) Å, beta = 94.71(3) degrees, V = 1438.6(7) Å(3), Z = 4. For 6, C(10)H(11)Cl(3)N(6)Mo: monoclinic, P2(1)/c, a = 15.366(3) Å, b = 7.804(2) Å, c = 12.378(3) Å, beta = 95.92(3) degrees, V = 1476.4(5) Å(3), Z = 4. For 7, C(20)H(17)N(8)S(2)Tc: monoclinic, P2(1), a = 8.827(2) Å, b = 9.278(2) Å, c = 13.304(3) Å, beta = 98.92(3) degrees, V = 1076.5(5) Å(3), Z = 2, 2564 reflections. For 8, C(20)H(17)N(8)S(2)Re: monoclinic, P2(1), a = 8.848(2) Å, b = 9.190(2) Å, c = 13.293(3) Å, beta = 98.89(3) degrees, V = 1067.9(5) Å(3), Z = 2. For 9, C(18)H(15)N(10)S(2)Re: monoclinic, P2(1), a = 8.796(2) Å, b = 9.008(2) Å, c = 13.208(3) Å, beta = 97.90(3) degrees, V = 1036.6(5) Å(3), Z = 2. For 12, C(18)H(15)N(9)S(3)Cl(2)Mo: monoclinic, P2(1)/n, a = 10.52900(10) Å, b = 15.1116(3) Å, c = 15.8193(3) Å, beta = 108.4790(10) degrees, V = 2387.23(7) Å(3), Z = 4. Complexes 2 and 3 serve as models for the binding of Tc(V)-oxo and Re(V)-oxo species to hydrazinonicotinamide (HYNIC)-conjugated chemotactic peptides. Furthermore, since the use of the pyrimidinethiol coligand in the {(99m)Tc-HYNIC-peptide} radiochemical species results in favorable pharmacokinetics, the thiolate derivatives 8 and 9 provide models for possible modes of interaction of metal-hydrazine cores with coligands in the radiopharmaceutical reagents.

16.
Inorg Chem ; 36(15): 3237-3241, 1997 Jul 16.
Article in English | MEDLINE | ID: mdl-11669986

ABSTRACT

The organohydrazide chelate complexes M(III)(NNpy)(PPh(3))(2)Cl(2) (1, 3) (M = Re, Tc) have been synthesized using the organohydrazine 2-hydrazinopyridine. The chelated organohydrazide is a diazenido(1-) ligand that forms a five-membered ring with the metal center. An X-ray structural analysis of 1 indicates that there is a delocalized pi-system formed by the chelate ring. These octahedral, d(4) metal complexes have diamagnetic (1)H NMR spectra. Complex 1, C(41.50)H(34)Cl(2)N(3)O(0.5)P(2)Re, crystallizes in the triclinic space group P&onemacr; with a = 10.5549(7) Å, b = 12.2699(8) Å, c = 16.8206(12) Å, alpha = 105.9050(10) degrees, beta = 95.8930(10) degrees, gamma = 111.0100(10) degrees, V = 1906.1(2) Å(3), Z = 2, and R = 0.0650 based on 5268 unique reflections. The FABMS+ in (p-nitrobenzyl alcohol) of 3 reveals a parent ion peak at m/z 799.2. The complex [Re(HNNpy)(NNpy)(PMe(2)Ph)(2)Cl](+)[Cl](-) (2) contains a chelated, neutral organodiazene ligand and a linear, diazenido(1-) ligand. The X-ray structural analysis of 2, C(26)H(30)Cl(2)N(6)P(2)Re, indicates a delocalized pi-system formed by the chelate ring. The (1)H NMR spectrum of 2 is not paramagnetically shifted. Complex 2 crystallizes in the orthorhombic space group Pna2(1) with a = 17.383(4) Å, b = 13.967(3) Å, c = 12.002(2) Å, V = 2913.9(10) Å(3), Z = 4, and R = 0.0384 based on 3083 unique reflections.

17.
New Phytol ; 136(3): 503-510, 1997 Jul.
Article in English | MEDLINE | ID: mdl-33863002

ABSTRACT

The relative ozone resistance of 20 European and two American populations of Plant ago major was examined, and relationships with climatic factors at the source of the plant material were explored using data provided by participants in the ICP-Crops initiative (International Co-operative Programme to Investigate the Effects of Air Pollutants and Other Stresses on Agricultural and Semi-Natural Vegetation). Plants grown from seed were exposed to either charcoal/Purafil® filtered air (CF < 5 nmol mol-1 O3 ) or CF + ozone (70 nmol mol-1 O3 7 h d-1 ) over a 2-wk period in controlled environment chambers, and effects on mean plant relative growth rate (R) and allometric root/shoot growth (K) determined. Ozone resistance (R%) was calculated from (R03 /RCF ) × 100. Populations exhibited contrasting sensitivities to ozone, without the development of typical visible symptoms of injury. A positive relationship was found between relative ozone resistance and descriptors of the ozone-climate at the site of seed collection for the year of, and the 2 yr before, seed collection. The best predictors of inherent ozone resistance were shown to be cumulative ozone exposure indices calculated according to current United Nations Economic Commission for Europe (UN-ECE) critical level guidelines for the pollutant (i.e. the accumulated hourly average ozone exposure over a threshold level of 40 nmol mol-1 (AOT40) or 30 nmol mol-1 (AOT30) calculated during daylight hours for the consecutive 3-month period of the year experiencing the highest ozone concentrations). No relationships were found between ozone resistance and climatic factors (temperature, precipitation, sunshine hours, humidity) or the concentrations of other air pollutants (SO2 , NO2 , NO). These findings support the view that current ambient levels of ozone in many regions of Europe are high enough to promote evolution of resistance to the pollutant in native plant populations. The significance of these findings to the debate over the establishment of separate critical levels for the protection of natural and semi-natural vegetation is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...