Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(21): eade9071, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37224261

ABSTRACT

The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-µm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.

2.
Nature ; 616(7957): 457-460, 2023 04.
Article in English | MEDLINE | ID: mdl-36858075

ABSTRACT

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos's along-track orbital velocity component of 2.70 ± 0.10 mm s-1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m-3, we find that the expected value of the momentum enhancement factor, ß, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m-3, [Formula: see text]. These ß values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos.

3.
Glob Chang Biol ; 27(22): 5726-5761, 2021 11.
Article in English | MEDLINE | ID: mdl-34314548

ABSTRACT

Livestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas (GHG) emissions mitigation has evolved, the prevailing focus has been-somewhat myopically-on technology applications associated with mitigation. Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co-benefits and trade-offs associated with mitigation interventions and (3) critique approaches for quantifying GHG emissions. This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low- and middle-income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple-bottom line benefit with medium-high mitigation potential. Third, while efforts designed to stimulate the adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co-benefits. The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems-based, multi-metric approaches that carefully consider the raison d'être for livestock systems. Consequential life cycle assessments and systems-aligned 'socio-economic planetary boundaries' offer useful starting points that may uncover leverage points and cross-scale emergent properties. The derivation of harmonized, globally reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterization of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas.


Subject(s)
Greenhouse Gases , Myopia , Animals , Carbon , Greenhouse Effect , Greenhouse Gases/analysis , Livestock
4.
Animals (Basel) ; 11(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805324

ABSTRACT

Anthropomorphic greenhouse gases are raising the temperature of the earth and threatening ecosystems. Since 1950 atmospheric carbon dioxide has increased 28%, while methane has increased 70%. Methane, over the first 20 years after release, has 80-times more warming potential as a greenhouse gas than carbon dioxide. Enteric methane from microbial fermentation of plant material by ruminants contributes 30% of methane released into the atmosphere, which is more than any other single source. Numerous strategies were reviewed to quantify their methane mitigation potential, their impact on animal productivity and their likelihood of adoption. The supplements, 3-nitrooxypropanol and the seaweed, Asparagopsis, reduced methane emissions by 40+% and 90%, respectively, with increases in animal productivity and small effects on animal health or product quality. Manipulation of the rumen microbial population can potentially provide intergenerational reduction in methane emissions, if treated animals remain isolated. Genetic selection, vaccination, grape marc, nitrate or biochar reduced methane emissions by 10% or less. Best management practices and cattle browsing legumes, Desmanthus or Leucaena species, result in small levels of methane mitigation and improved animal productivity. Feeding large amounts daily of ground wheat reduced methane emissions by around 35% in dairy cows but was not sustained over time.

6.
Nat Commun ; 11(1): 300, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964860

ABSTRACT

The ~70 km-diameter Yarrabubba impact structure in Western Australia is regarded as among Earth's oldest, but has hitherto lacked precise age constraints. Here we present U-Pb ages for impact-driven shock-recrystallised accessory minerals. Shock-recrystallised monazite yields a precise impact age of 2229 ± 5 Ma, coeval with shock-reset zircon. This result establishes Yarrabubba as the oldest recognised meteorite impact structure on Earth, extending the terrestrial cratering record back >200 million years. The age of Yarrabubba coincides, within uncertainty, with temporal constraint for the youngest Palaeoproterozoic glacial deposits, the Rietfontein diamictite in South Africa. Numerical impact simulations indicate that a 70 km-diameter crater into a continental glacier could release between 8.7 × 1013 to 5.0 × 1015 kg of H2O vapour instantaneously into the atmosphere. These results provide new estimates of impact-produced H2O vapour abundances for models investigating termination of the Paleoproterozoic glaciations, and highlight the possible role of impact cratering in modifying Earth's climate.

7.
Biomed Instrum Technol ; 40(1): 72-7, 2006.
Article in English | MEDLINE | ID: mdl-16544793

ABSTRACT

Ultrasonic skin permeation using the SonoPrep (Sontra Medical Corporation, Franklin, MA) device was evaluated as a methodto reduce skin impedance for electrophystology measurements. SonoPrep treatment was compared to QuikPrep (Quinton , Inc, Bothell, WA) and mechanical abrasion with the Kendall Excel electrode release liner (Tyco Healthcare, Mansfield, MA). Five skin sites for each prepping method were treated on the backs of 10 volunteer subjects. Skin impedance was measured across the sites over 24 hours at times equal to 0 to 7 hours, 23 hours, and 24 hours. Average skin impedance for all sites and times following treatment with SonoPrep war 1.9 kiloohms (komega), with QuikPrep was 18. 7komega, and with Excel abrasion was 97.2 komega. Skin impedance was stable for 24 hours following SonoPrep treatment and declined initially following QuikPrep. Skin impedance decilned continually following Excel abrasive preparation. SonoPrep ultrasonic skin permeation reduces skin impedance to significantly decreased levels in a reproducibly consistent manner.


Subject(s)
Electrophysiology/instrumentation , Electrophysiology/methods , Skin Physiological Phenomena/radiation effects , Sonication , Electric Impedance , Equipment Design , Equipment Failure Analysis , Humans , Permeability/radiation effects , Pilot Projects , Technology Assessment, Biomedical
8.
Diabetes Technol Ther ; 6(1): 21-30, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15000766

ABSTRACT

Frequent monitoring and tight metabolic control of blood glucose levels can reduce microvascular complications and subsequent co-morbidities in patients with diabetes. Self-monitoring with finger sticks provides intermittent data at best, and results in poor compliance. We report on a minimally invasive system that continually measures glucose flux through ultrasonically permeated skin. Ten patients with diabetes were enrolled in a clinical study to determine correlation between data collected by glucose biosensors placed over ultrasonically treated skin sites (two per patient), and blood glucose readings were taken every 20 min over an 8-h period. Glucose flux biosensors measured amperometric current proportional to hydrogen peroxide level, generated from catalytic conversion of glucose by glucose oxidase; the sensor was coupled to the skin by a thin hydrogel containing an osmotic extraction buffer, creating a gradient for glucose transport through the skin. The biosensors were attached to small portable meters that recorded time, current, and temperature readings every 5 s. At the conclusion of the study period, meter recordings were downloaded for data processing. Skin sites were examined for irritation due to biosensor contact. Data from glucose biosensors with completed data sets had a correlation coefficient of 0.84, and 95% of the data pairs (n = 241) were in the A + B region of a Clarke error grid. Ultrasonic pretreatment lasting about 10 s resulted in improved conductance in all patients. No patients complained of pain or irritation at any time during the study. Continuous monitoring of glucose flux through ultrasonically permeable skin is safe and feasible.


Subject(s)
Biosensing Techniques/methods , Blood Glucose Self-Monitoring/methods , Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Adult , Aged , Biosensing Techniques/instrumentation , Biosensing Techniques/standards , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/standards , Equipment Design , Female , Humans , Male , Middle Aged , Reproducibility of Results , Skin/blood supply , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL
...