Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biodivers Data J ; 9: e75907, 2021.
Article in English | MEDLINE | ID: mdl-34975279

ABSTRACT

BACKGROUND: Tylocinum Y.C. Li & Zhu L. Yang 2016 is a Boletaceae genus belonging in subfamily Leccinoideae. It was described in 2016 from China and, prior to this study, it contained only one species, T.griseolum Y.C. Li & Zhu L. Yang 2016. During our survey of Boletaceae from Thailand, we collected some specimens that could be identified as a Tylocinum species, different from T.griseolum. NEW INFORMATION: The bolete specimens, collected in forests dominated by Dipterocarpaceae and Fagaceae in northern Thailand, are described as Tylocinumbrevisporum Raghoonundon & Raspé sp. nov. Macroscopic and microscopic descriptions with illustrations are provided, as well as a 3-gene phylogeny, which confirms the new taxon's position in Tylocinum. Tylocinumbrevisporum differs from the only other known Tylocinum species (T.griseolum) by its brownish-grey colour, greyish-orange to brownish-orange colour change in the hymenophore when bruised, smaller pores (≤ 0.5 mm), longer tubes (up to 6 mm long), shorter and narrower basidiospores, longer and broader basidia and longer pleurocystidia relative to cheilocystidia. T.brevisporum is the second species from the genus Tylocinum and the only one to be found outside China thus far.

2.
Pharmacol Res Perspect ; 8(6): e00688, 2020 12.
Article in English | MEDLINE | ID: mdl-33280274

ABSTRACT

Functional neurological disorders (FNDs), which are sometimes also referred to as psychogenic neurological disorders or conversion disorder, are common disabling neuropsychiatric disorders with limited treatment options. FNDs can present with sensory and/or motor symptoms, and, though they may mimic other neurological conditions, they are thought to occur via mechanisms other than those related to identifiable structural neuropathology and, in many cases, appear to be triggered and sustained by recognizable psychological factors. There is intriguing preliminary evidence to support the use of psychedelic-assisted therapy in a growing number of psychiatric illnesses, including FNDs. We review the theoretical arguments for and against exploring psychedelic-assisted therapy as a treatment for FNDs. We also provide an in-depth discussion of prior published cases detailing the use of psychedelics for psychosomatic conditions, analyzing therapeutic outcomes from a contemporary neuroscientific vantage as informed by several recent neuroimaging studies on psychedelics and FNDs.


Subject(s)
Hallucinogens/therapeutic use , Mental Disorders/diagnosis , Mental Disorders/drug therapy , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Adult , Animals , Bayes Theorem , Brain/drug effects , Brain/pathology , Child , Dystonia/diagnosis , Dystonia/drug therapy , Dystonia/psychology , Female , Hallucinogens/pharmacology , Humans , Male , Mental Disorders/psychology , Nervous System Diseases/psychology
3.
Appl Plant Sci ; 8(9): e11392, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33014636

ABSTRACT

PREMISE: Motivated to make sensible interpretations of the massive volume of data from the Australian Microbiome Initiative (AusMic), we characterize the soil mycota of Australia. We establish operational taxonomic units (OTUs) from the data and compare these to GenBank and a data set from the National Herbarium of Victoria (MEL), Melbourne, Australia. We also provide visualizations of Agaricomycete diversity, drawn from our analyses of the AusMic sequences and taxonomy. METHODS: The AusMic internal transcribed spacer (ITS) data were filtered to create OTUs, which were searched against the National Center for Biotechnology Information Nucleotide database and the MEL database. We further characterized a portion of our OTUs by graphing the counts of the families and orders of Agaricomycetes. We also graphed AusMic species determinations for Australian Agaricomycetes against latitude. RESULTS: Our filtering process generated 192,325 OTUs; for Agaricomycetes, there were 27,730 OTUs. Based on the existing AusMic taxonomy at species level, we inferred the diversity of Australian Agaricomycetes against latitude to be lowest between -20 and -25 decimal degrees. DISCUSSION: BLAST comparisons provided reciprocal insights between the three data sets, including the detection of unusual root-associated species in the AusMic data, insights into mushroom morphology from the MEL data, and points of comparison for the taxonomic determinations between AusMic, GenBank, and MEL. This study provides a tabulation of Australian fungi, different visual snapshots of a subset of those taxa, and a springboard for future studies.

4.
Mycologia ; 110(5): 985-995, 2018.
Article in English | MEDLINE | ID: mdl-30303458

ABSTRACT

Gyroporus (Gyroporaceae, Boletales) is a highly diverse genus of poroid ectomycorrhizal mushrooms with a nearly worldwide distribution. Previous attempts to unravel the diversity within this genus proved difficult due to the presence of semicryptic species and ambiguous results from analysis of ribosomal RNA markers. In this study, we employ a combined morphotaxonomic and phylogenetic approach to delimit species and elucidate geographic and evolutionary patterns in Gyroporus. For phylogenetic analyses, the protein-coding genes atp6 (mitochondrial adenosine triphosphate [ATP] synthase subunit 6) and rpb2 (nuclear second largest subunit of RNA polymerase II) were selected based on their utility in studies of Boletales. We infer several distinct clades, most notably one corresponding to G. castaneus as a speciose Northern Hemisphere group, another unifying G. cyanescens and like entities, and a third group unifying G. longicystidiatus and a New World sister species. Also notable is the recovery of a sister relationship between the cyanescens and longicystidiatus clades. We formally describe five new species of Gyroporus, outline a number of provisional species, and briefly discuss distributional patterns. This study provides an important scaffold for future work on this well-known but poorly understood genus of fungi.


Subject(s)
Basidiomycota/classification , Basidiomycota/genetics , Fruiting Bodies, Fungal/growth & development , Genetic Variation , Phylogeography , Basidiomycota/growth & development , Mitochondrial Proton-Translocating ATPases/genetics , Protein Subunits/genetics , RNA Polymerase II/genetics , Sequence Analysis, DNA
5.
Peptides ; 31(1): 27-43, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19852991

ABSTRACT

The shrimp Litopenaeus vannamei is arguably the most important aquacultured crustacean, being the subject of a multi-billion dollar industry worldwide. To extend our knowledge of peptidergic control in this species, we conducted an investigation combining transcriptomics and mass spectrometry to identify its neuropeptides. Specifically, in silico searches of the L. vannamei EST database were conducted to identify putative prepro-hormone-encoding transcripts, with the mature peptides contained within the deduced precursors predicted via online software programs and homology to known isoforms. MALDI-FT mass spectrometry was used to screen tissue fragments and extracts via accurate mass measurements for the predicted peptides, as well as for known ones from other species. ESI-Q-TOF tandem mass spectrometry was used to de novo sequence peptides from tissue extracts. In total 120 peptides were characterized using this combined approach, including 5 identified both by transcriptomics and by mass spectrometry (e.g. pQTFQYSRGWTNamide, Arg(7)-corazonin, and pQDLDHVFLRFamide, a myosuppressin), 49 predicted via transcriptomics only (e.g. pQIRYHQCYFNPISCF and pQIRYHQCYFIPVSCF, two C-type allatostatins, and RYLPT, authentic proctolin), and 66 identified solely by mass spectrometry (e.g. the orcokinin NFDEIDRAGMGFA). While some of the characterized peptides were known L. vannamei isoforms (e.g. the pyrokinins DFAFSPRLamide and ADFAFNPRLamide), most were novel, either for this species (e.g. pEGFYSQRYamide, an RYamide) or in general (e.g. the tachykinin-related peptides APAGFLGMRamide, APSGFNGMRamide and APSGFLDMRamide). Collectively, our data not only expand greatly the number of known L. vannamei neuropeptides, but also provide a foundation for future investigations of the physiological roles played by them in this commercially important species.


Subject(s)
Gene Expression Profiling , Mass Spectrometry , Neuropeptides , Penaeidae/chemistry , Penaeidae/genetics , Amino Acid Sequence , Animals , Computational Biology/methods , Databases, Genetic , Expressed Sequence Tags , Humans , Molecular Sequence Data , Neuropeptides/chemistry , Neuropeptides/genetics , Penaeidae/anatomy & histology , Sequence Alignment , Tachykinins/chemistry , Tachykinins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...