Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int Genet ; 65: 102892, 2023 07.
Article in English | MEDLINE | ID: mdl-37267812

ABSTRACT

The interpretation of a DNA mixture (a sample that contains DNA from two or more people) depends on a laboratory/analyst's assessment of the suitability of the sample for comparison/analysis, and an assessment of the number of contributors (NoC) present in the sample. In this study, 134 participants from 67 forensic laboratories provided a total of 2272 assessments of 29 DNA mixtures (provided as electropherograms). The laboratories' responses were evaluated in terms of the variability of suitability assessments, and the accuracy and variability of NoC assessments. Policies and procedures related to suitability and NoC varied notably among labs. We observed notable variation in whether labs would assess a given mixture as suitable or not, predominantly due to differences in lab policies: if two labs following their standard operating procedures (SOPs) were given the same mixture, they agreed on whether the mixture was suitable for comparison 66% of the time. Differences in suitability assessments have a direct effect on variability in interpretations among labs, since mixtures assessed as not suitable would not result in reported interpretations. For labs following their SOPs, 79% of assessments of NoC were correct. When two different labs provided NoC responses, 63% of the time both labs were correct, and 7% of the time both labs were incorrect. Incorrect NoC assessments have been shown to affect statistical analyses in some cases, but do not necessarily imply inaccurate interpretations or conclusions. Most incorrect NoC estimates were overestimates, which previous research has shown have less of an effect on likelihood ratios than underestimates.


Subject(s)
DNA Fingerprinting , DNA , Humans , DNA/genetics , Laboratories , Forensic Genetics/methods
2.
mSystems ; 7(2): e0004122, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35353006

ABSTRACT

Bones and teeth can provide a lasting resource to identify human remains following decomposition. Bone can support dynamic communities of micro- and macroscopic scavengers and incidental taxa, which influence the preservation of bone over time. Previously we identified key microbial taxa associated with survivability of DNA in bones of surface-decomposed human remains, observing high intra- and interindividual variation. Here we characterized the postmortem bone microbiome of skeletal remains in a multi-individual burial to better understand subsurface bone colonization and preservation. To understand microbial community origins and assembly, 16S rRNA amplicon sequences from 256 bone and 27 soil samples were compared to bone from individuals who decomposed on the ground surface, and human gut sequences from the American Gut Project. Untargeted metabolomics was applied to a subset of 41 bone samples from buried remains to examine potential microbe-metabolite interactions and infer differences related to community functionality. Results show that postmortem bone microbial communities are distinct from those of the oxic surface soils and the human gut. Microbial communities from surface-deposited bone and shallow buried bone were more similar to those from soils, while bones recovered from saturated areas deeper in the grave showed increased similarity with human gut samples with higher representation of anaerobic taxa, suggesting that the depositional environment affected the established bone microbiome. Correlations between metabolites and microbes indicate that phosphate solubilization is likely an important mechanism of microbially mediated skeletal degradation. This research expands our knowledge of microbial bone colonizers, including colonizers important in a burial environment. IMPORTANCE Understanding the microbes that colonize and degrade bone has important implications for preservation of skeletal elements and identification of unknown human remains. Current research on the postmortem bone microbiome is limited and largely focuses on archaeological or marine contexts. Our research expands our understanding of bone microbiomes in buried remains by characterizing the taxonomic and metabolic diversity of microbes that are colonizing bone after a 4-year postmortem burial interval and examines the potential impact of microbial colonization on human skeletal DNA preservation. Our results indicate that the postmortem bone microbiome is distinct from the human gut and soil. Evidence from combined metabolomic and amplicon sequencing analysis suggests that Pseudomonas and phosphate solubilization likely play a role in skeletal degradation. This work provides important insight into the types and activities of microbes controlling the preservation of buried skeletal remains.


Subject(s)
Body Remains , Microbiota , Humans , RNA, Ribosomal, 16S/analysis , Microbiota/genetics , DNA , Soil
3.
PLoS One ; 15(7): e0218636, 2020.
Article in English | MEDLINE | ID: mdl-32639969

ABSTRACT

Microbial colonization of bone is an important mechanism of postmortem skeletal degradation. However, the types and distributions of bone and tooth colonizing microbes are not well characterized. It is unknown if microbial communities vary in abundance or composition between bone element types, which could help explain differences in human DNA preservation. The goals of the present study were to (1) identify the types of microbes capable of colonizing different human bone types and (2) relate microbial abundances, diversity, and community composition to bone type and human DNA preservation. DNA extracts from 165 bone and tooth samples from three skeletonized individuals were assessed for bacterial loading and microbial community composition and structure. Random forest models were applied to predict operational taxonomic units (OTUs) associated with human DNA concentration. Dominant bacterial bone colonizers were from the phyla Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Planctomycetes. Eukaryotic bone colonizers were from Ascomycota, Apicomplexa, Annelida, Basidiomycota, and Ciliophora. Bacterial loading was not a significant predictor of human DNA concentration in two out of three individuals. Random forest models were minimally successful in identifying microbes related to human DNA concentration, which were complicated by high variability in community structure between individuals and body regions. This work expands on our understanding of the types of microbes capable of colonizing the postmortem human skeleton and potentially contributing to human skeletal DNA degradation.


Subject(s)
Bone and Bones/microbiology , Microbiota , Anthropology , Ascomycota/genetics , Ascomycota/isolation & purification , Autopsy , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , DNA/chemistry , DNA/metabolism , Humans , Male , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Tooth/microbiology
4.
Forensic Sci Int Genet ; 44: 102193, 2020 01.
Article in English | MEDLINE | ID: mdl-31710897

ABSTRACT

Our ability to identify skeletal remains often relies on the quality and quantity of DNA extracted from bone and teeth. Current research on buried remains has been retrospective, and no study to our knowledge has comprehensively assessed both intra-individual and inter-individual variation in human skeletal DNA from all representative skeletal element types recovered from a burial. Three individuals were interred together in a single grave for four years. Following disinterment, skeletal DNA was extracted, quantified, and GlobalFiler™ results were produced from 49 bones per skeleton, representing all bone types. Multiple sites per bone were also tested to determine intra-bone variability. Co-extracted bacterial and fungal DNA were quantified to determine microbial loads in the bones. Results show that the small, cancellous bones of the feet outperformed other bones in terms of DNA yield, measured as nanograms per gram of bone powder, and short tandem repeat (STR) profile completeness. The cuneiforms, in particular, had consistently high human DNA yields for all three individuals. DNA yield varied by individual and depth within the grave, with the shallowest individual demonstrating the highest DNA yields While the feet exhibited the greatest variation in DNA yield across bone type and sampling site, they also demonstrated some of the highest DNA yields and the most complete STR profiles, evoking a re-evaluation of their use for skeletal DNA sampling and analysis.


Subject(s)
Body Remains , Bone and Bones/chemistry , Burial , DNA/analysis , Cancellous Bone/chemistry , DNA Fingerprinting , DNA, Bacterial/analysis , DNA, Fungal/analysis , Female , Humans , Male , Microsatellite Repeats , Postmortem Changes
SELECTION OF CITATIONS
SEARCH DETAIL
...