Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38826215

ABSTRACT

Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for screening psychoactive drugs with psychedelic properties.

2.
Drug Discov Today ; 28(12): 103818, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925136

ABSTRACT

Psychiatric disorders represent the largest cause of disability worldwide. Global interests in psychedelic substances as potentially therapeutic agents for psychiatric disorders has recently re-emerged. Here, we review progress in the development of psychedelic compounds that have potential therapeutic effects as well as the safety concerns. We include psilocybin, N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and the entactogen 3,4-methyl-enedioxy-methamphetamine (MDMA). We also review the potential interactive effects these compounds can have with psychotherapeutic approaches. We provide a cutting-edge review of active and recently completed clinical trials based on the published literature (from MEDLINE), published abstracts at citable conferences, clinical trials from the US Clinical Trials registry (clinicaltrials.gov) and media press releases.


Subject(s)
Hallucinogens , Mental Disorders , Humans , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Lysergic Acid Diethylamide/therapeutic use , Mental Disorders/drug therapy , Psilocybin/therapeutic use , N,N-Dimethyltryptamine/therapeutic use
3.
eNeuro ; 10(6)2023 06.
Article in English | MEDLINE | ID: mdl-37295945

ABSTRACT

Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.


Subject(s)
Receptors, Nicotinic , Substance Withdrawal Syndrome , Male , Mice , Animals , Nicotine/pharmacology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Brain/metabolism , Cholinergic Agents , RNA, Messenger , Receptors, Cholinergic/metabolism
4.
bioRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034602

ABSTRACT

Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement: Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.

5.
Neuropsychopharmacology ; 48(9): 1257-1266, 2023 08.
Article in English | MEDLINE | ID: mdl-37015972

ABSTRACT

Serotonergic psychedelics are gaining increasing interest as potential therapeutics for a range of mental illnesses. Compounds with short-lived subjective effects may be clinically useful because dosing time would be reduced, which may improve patient access. One short-acting psychedelic is 5-MeO-DMT, which has been associated with improvement in depression and anxiety symptoms in early phase clinical studies. However, relatively little is known about the behavioral and neural mechanisms of 5-MeO-DMT, particularly the durability of its long-term effects. Here we characterized the effects of 5-MeO-DMT on innate behaviors and dendritic architecture in mice. We showed that 5-MeO-DMT induces a dose-dependent increase in head-twitch response that is shorter in duration than that induced by psilocybin at all doses tested. 5-MeO-DMT also substantially suppresses social ultrasonic vocalizations produced during mating behavior. 5-MeO-DMT produces long-lasting increases in dendritic spine density in the mouse medial frontal cortex that are driven by an elevated rate of spine formation. However, unlike psilocybin, 5-MeO-DMT did not affect the size of dendritic spines. These data provide insights into the behavioral and neural consequences underlying the action of 5-MeO-DMT and highlight similarities and differences with those of psilocybin.


Subject(s)
Hallucinogens , Mental Disorders , Mice , Animals , Psilocybin , Instinct , Methoxydimethyltryptamines/pharmacology , Mental Disorders/drug therapy
6.
ACS Chem Neurosci ; 14(3): 468-480, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36630309

ABSTRACT

Psilocybin is a psychedelic with therapeutic potential. While there is growing evidence that psilocybin exerts its beneficial effects through enhancing neural plasticity, the exact brain regions involved are not completely understood. Determining the impact of psilocybin on plasticity-related gene expression throughout the brain can broaden our understanding of the neural circuits involved in psychedelic-evoked neural plasticity. In this study, whole-brain serial two-photon microscopy and light sheet microscopy were employed to map the expression of the immediate early gene, c-Fos, in male and female mice. The drug-induced c-Fos expression following psilocybin administration was compared to that of subanesthetic ketamine and saline control. Psilocybin and ketamine produced acutely comparable elevations in c-Fos expression in numerous brain regions, including anterior cingulate cortex, locus coeruleus, primary visual cortex, central and basolateral amygdala, medial and lateral habenula, and claustrum. Select regions exhibited drug-preferential differences, such as dorsal raphe and insular cortex for psilocybin and the CA1 subfield of hippocampus for ketamine. To gain insights into the contributions of receptors and cell types, the c-Fos expression maps were related to brain-wide in situ hybridization data. The transcript analyses showed that the endogenous levels of Grin2a and Grin2b predict whether a cortical region is sensitive to drug-evoked neural plasticity for both ketamine and psilocybin. Collectively, the systematic mapping approach produced an unbiased list of brain regions impacted by psilocybin and ketamine. The data are a resource that highlights previously underappreciated regions for future investigations. Furthermore, the robust relationships between drug-evoked c-Fos expression and endogenous transcript distributions suggest glutamatergic receptors as a potential convergent target for how psilocybin and ketamine produce their rapid-acting and long-lasting therapeutic effects.


Subject(s)
Hallucinogens , Ketamine , Male , Female , Mice , Animals , Ketamine/pharmacology , Psilocybin/pharmacology , Hallucinogens/pharmacology , Hallucinogens/metabolism , Genes, Immediate-Early , Brain/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Dorsal Raphe Nucleus/metabolism
7.
Science ; 375(6585): eabj5861, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35271334

ABSTRACT

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Subject(s)
Neocortex/physiology , Neural Pathways , Neurons/physiology , Synapses/physiology , Synaptic Transmission , Adult , Animals , Datasets as Topic , Excitatory Postsynaptic Potentials , Female , Humans , Inhibitory Postsynaptic Potentials , Male , Mice , Mice, Transgenic , Models, Neurological , Neocortex/cytology , Temporal Lobe/cytology , Temporal Lobe/physiology , Visual Cortex/cytology , Visual Cortex/physiology
8.
Brain ; 145(7): 2332-2346, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35134125

ABSTRACT

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.


Subject(s)
Epilepsy, Absence , Hypoglycemia , AMP-Activated Protein Kinases/metabolism , Epilepsy, Absence/metabolism , Humans , Hypoglycemia/chemically induced , Hypoglycemia/metabolism , Receptors, GABA-B/metabolism , Seizures , Thalamus
9.
Curr Biol ; 32(3): 559-569.e5, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34914905

ABSTRACT

Connectomes generated from electron microscopy images of neural tissue unveil the complex morphology of every neuron and the locations of every synapse interconnecting them. These wiring diagrams may also enable inference of synaptic and neuronal biophysics, such as the functional weights of synaptic connections, but this requires integration with physiological data to properly parameterize. Working with a stereotyped olfactory network in the Drosophila brain, we make direct comparisons of the anatomy and physiology of diverse neurons and synapses with subcellular and subthreshold resolution. We find that synapse density and location jointly predict the amplitude of the somatic postsynaptic potential evoked by a single presynaptic spike. Biophysical models fit to data predict that electrical compartmentalization allows axon and dendrite arbors to balance independent and interacting computations. These findings begin to fill the gap between connectivity maps and activity maps, which should enable new hypotheses about how network structure constrains network function.


Subject(s)
Connectome , Animals , Axons , Drosophila , Neurons/physiology , Synapses/physiology
10.
Neuron ; 109(16): 2535-2544.e4, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34228959

ABSTRACT

Psilocybin is a serotonergic psychedelic with untapped therapeutic potential. There are hints that the use of psychedelics can produce neural adaptations, although the extent and timescale of the impact in a mammalian brain are unknown. In this study, we used chronic two-photon microscopy to image longitudinally the apical dendritic spines of layer 5 pyramidal neurons in the mouse medial frontal cortex. We found that a single dose of psilocybin led to ∼10% increases in spine size and density, driven by an elevated spine formation rate. The structural remodeling occurred quickly within 24 h and was persistent 1 month later. Psilocybin also ameliorated stress-related behavioral deficit and elevated excitatory neurotransmission. Overall, the results demonstrate that psilocybin-evoked synaptic rewiring in the cortex is fast and enduring, potentially providing a structural trace for long-term integration of experiences and lasting beneficial actions.


Subject(s)
Dendrites/drug effects , Dendritic Spines/drug effects , Frontal Lobe/drug effects , Neuronal Plasticity/drug effects , Psilocybin/pharmacology , Animals , Cerebral Cortex/drug effects , Dendrites/physiology , Dendritic Spines/physiology , Female , Male , Mice , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Synaptic Transmission/drug effects
11.
Chronic Stress (Thousand Oaks) ; 5: 24705470211020446, 2021.
Article in English | MEDLINE | ID: mdl-34124495

ABSTRACT

Mood disorders represent a pressing public health issue and significant source of disability throughout the world. The classical monoamine hypothesis, while useful in developing improved understanding and clinical treatments, has not fully captured the complex nature underlying mood disorders. Despite these shortcomings, the monoamine hypothesis continues to dominate the conceptual framework when approaching mood disorders. However, recent advances in basic and clinical research have led to a greater appreciation for the role that amino acid neurotransmitters play in the pathophysiology of mood disorders and as potential targets for novel therapies. In this article we review progress of compounds that focus on these systems. We cover both glutamate-targeting drugs such as: esketamine, AVP-786, REL-1017, AXS-05, rapastinel (GLYX-13), AV-101, NRX-101; as well as GABA-targeting drugs such as: brexanolone (SAGE-547), ganaxolone, zuranolone (SAGE-217), and PRAX-114. We focus the review on phase-II and phase-III clinical trials and evaluate the extant data and progress of these compounds.

12.
Nat Commun ; 12(1): 1115, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33602917

ABSTRACT

Animals form and update learned associations between otherwise neutral sensory cues and aversive outcomes (i.e., punishment) to predict and avoid danger in changing environments. When a cue later occurs without punishment, this unexpected omission of aversive outcome is encoded as reward via activation of reward-encoding dopaminergic neurons. How such activation occurs remains unknown. Using real-time in vivo functional imaging, optogenetics, behavioral analysis and synaptic reconstruction from electron microscopy data, we identify the neural circuit mechanism through which Drosophila reward-encoding dopaminergic neurons are activated when an olfactory cue is unexpectedly no longer paired with electric shock punishment. Reduced activation of punishment-encoding dopaminergic neurons relieves depression of olfactory synaptic inputs to cholinergic neurons. Synaptic excitation by these cholinergic neurons of reward-encoding dopaminergic neurons increases their odor response, thus decreasing aversiveness of the odor. These studies reveal how an excitatory cholinergic relay from punishment- to reward-encoding dopaminergic neurons encodes the absence of punishment as reward, revealing a general circuit motif for updating aversive memories that could be present in mammals.


Subject(s)
Dopamine/metabolism , Drosophila melanogaster/physiology , Punishment , Reward , Animals , Avoidance Learning/physiology , Conditioning, Classical , Dopaminergic Neurons/physiology , Memory/physiology , Reversal Learning , Smell/physiology , Synapses/physiology
13.
Adv Pharmacol ; 89: 103-129, 2020.
Article in English | MEDLINE | ID: mdl-32616204

ABSTRACT

Depression represents one of the most common and debilitating mental illnesses in the world today. Despite this pressing issue, the majority treatments for depression give patients therapeutic response only approximately half of the time, with many not responding at all. In part, this stagnation has been due to the dominance of the monoamine hypothesis that guides the current approach to understanding and treating depression. While therapies that increase levels of monoamines have been useful, clearly a more complete understanding of the neural circuits and treatments is needed to better help patients. Recent work that exploits the glutamatergic system within the brain has demonstrated a functional role for glutamate in combatting depression. While more research is required to understand the specific glutamatergic pathophysiological mechanisms within depression, emerging clinical work has already demonstrated promising results. Current treatments that target the glutamatergic system, especially NMDA receptor antagonists have already shown efficacy in several clinical trials. In this chapter we briefly introduce a mechanistic basis for a role of glutamate in the pathophysiology of depression. We further review basic and translational studies that describes potential mechanisms and roles for glutamate. A discussion of the first promising NMDA receptor antagonist for depression, ketamine, follows afterward. The development of NMDA receptor antagonists for treatment of depression is chronicled, from initial studies up through the recent FDA approval of intranasal esketamine as well as other newer compounds that have shown recent promise in clinical trials.


Subject(s)
Practice Patterns, Physicians' , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Antidepressive Agents/pharmacology , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Glutamic Acid/therapeutic use , Humans , Ketamine/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Elife ; 72018 09 26.
Article in English | MEDLINE | ID: mdl-30256194

ABSTRACT

Generating a comprehensive description of cortical networks requires a large-scale, systematic approach. To that end, we have begun a pipeline project using multipatch electrophysiology, supplemented with two-photon optogenetics, to characterize connectivity and synaptic signaling between classes of neurons in adult mouse primary visual cortex (V1) and human cortex. We focus on producing results detailed enough for the generation of computational models and enabling comparison with future studies. Here, we report our examination of intralaminar connectivity within each of several classes of excitatory neurons. We find that connections are sparse but present among all excitatory cell classes and layers we sampled, and that most mouse synapses exhibited short-term depression with similar dynamics. Synaptic signaling between a subset of layer 2/3 neurons, however, exhibited facilitation. These results contribute to a body of evidence describing recurrent excitatory connectivity as a conserved feature of cortical microcircuits.


Subject(s)
Nerve Net/physiology , Visual Cortex/physiology , Adult , Animals , Electrophysiological Phenomena , Evoked Potentials/physiology , Excitatory Postsynaptic Potentials/physiology , Female , Humans , Limit of Detection , Male , Mice , Models, Neurological , Neuronal Plasticity/physiology , Optogenetics , Photons , Probability , Signal Transduction , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...