Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Omega ; 7(39): 34779-34788, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211029

ABSTRACT

Co-inoculation with beneficial microbes has been suggested as a useful practice for the enhancement of plant growth, nutrient uptake, and soil nutrients. For the first time in Uzbekistan the role of plant-growth-promoting Bacillus endophyticus IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant growth, the physiological properties of ginger (Zingiber officinale), and soil enzymatic activities was studied. Moreover, the coinoculation of B. endophyticus IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf number by 70%, leaf length by 82%, and leaf width by 40% compared to the control. B. endophyticus IGPEB 33 individually increased plant height significantly by 51%, leaf number by 56%, leaf length by 67%, and leaf width by 27% as compared to the control treatment. Compared to the control, B. endophyticus IGPEB 33 and AMF individually significantly increased chlorophyll a by 81-58%, chlorophyll b by 68-37%, total chlorophyll by 74-53%, and carotenoid content by 67-55%. However, combination of B. endophyticus IGPEB 33 and AMF significantly increased chlorophyll a by 86%, chlorophyll b by 72%, total chlorophyll by 82%, and carotenoid content by 83% compared to the control. Additionally, plant-growth-promoting B. endophyticus IGPEB 33 and AMF inoculation improved soil nutrients and soil enzyme activities compared to the all treatments. Co-inoculation with plant-growth-promoting B. endophyticus and AMF could be an alternative for the production of ginger that is more beneficial to soil nutrient deficiencies. We suggest that a combination of plant-growth-promoting B. endophyticus and AMF inoculation could be a more sustainable and eco-friendly approach in a nutrient-deficient soil.

2.
Curr Res Microb Sci ; 3: 100133, 2022.
Article in English | MEDLINE | ID: mdl-35909614

ABSTRACT

This study reports the diversity of cultivable endophytic bacteria associated with yellow iris (Iris pseudacorus L.) by using 16S rRNA gene analysis and their plant beneficial traits. The 16S rRNA sequence similarities of endophytic bacteria isolated from the leaves and roots of yellow iris showed that the isolates belonged to the genera Staphylococcus, Streptomyces, Variovorax, Pantoea, Paenibacillus, Bacillus, Janthinobacterium, Enterobacter, Brevibacterium, Agrobacterium, Rhizobium, Xanthomonas translucens, and Pseudomonas. The endophytic bacteria Pseudomonas gessardii HRT18, Brevibacterium frigoritolerans HRT8, Streptomyces atratus HRT13, and Bacillus toyonensis HST13 exhibited antimicrobial activity against five plant pathogenic fungi Fusarium, Rhizoctonia, Botrytis, Pythium, and Alternaria. They also demonstrated the capability to produce chitinase, protease, glucanase, lipase, HCN, and indole-3-acetic acid (IAA). Thirteen isolates (46%) produced IAA, and the most active IAA producers were Bacillus cereus, Agrobacterium tumefaciens, Agrobacterium vitis, Bacillus megaterium, and Bacillus aryabhattai. The IAA producing bacterial isolates stimulated root and shoot growth of garden cress. Our findings suggest that medicinal plants could be a promising source for isolating plant-beneficial bacteria that can be used to enhance the growth and protect plants against soil-borne pathogens.

3.
Sci Rep ; 11(1): 22081, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764331

ABSTRACT

Drought stress is the major abiotic factor limiting crop production. Co-inoculating crops with nitrogen fixing bacteria and plant growth-promoting rhizobacteria (PGPR) improves plant growth and increases drought tolerance in arid or semiarid areas. Soybean is a major source of high-quality protein and oil for humans. It is susceptible to drought stress conditions. The co-inoculation of drought-stressed soybean with nodulating rhizobia and root-colonizing, PGPR improves the root and the shoot growth, formation of nodules, and nitrogen fixation capacity in soybean. The present study was aimed to observe if the co-inoculation of soybean (Glycine max L. (Merr.) nodulating with Bradyrhizobium japonicum USDA110 and PGPR Pseudomonas putida NUU8 can enhance drought tolerance, nodulation, plant growth, and nutrient uptake under drought conditions. The results of the study showed that co-inoculation with B. japonicum USDA110 and P. putida NUU8 gave more benefits in nodulation and growth of soybean compared to plants inoculated with B. japonicum USDA110 alone and uninoculated control. Under drought conditions, co-inoculation of B. japonicum USDA 110 and P. putida NUU8 significantly enhanced the root length by 56%, shoot length by 33%, root dry weight by 47%, shoot dry weight by 48%, and nodule number 17% compared to the control under drought-stressed. Co-inoculation with B. japonicum, USDA 110 and P. putida NUU8 significantly enhanced plant and soil nutrients and soil enzymes compared to control under normal and drought stress conditions. The synergistic use of B. japonicum USDA110 and P. putida NUU8 improves plant growth and nodulation of soybean under drought stress conditions. The results suggested that these strains could be used to formulate a consortium of biofertilizers for sustainable production of soybean under drought-stressed field conditions.


Subject(s)
Bradyrhizobium/growth & development , Glycine max/growth & development , Plant Roots/growth & development , Symbiosis , Bradyrhizobium/physiology , Droughts , Plant Root Nodulation , Plant Roots/microbiology , Plant Roots/physiology , Soil Microbiology , Glycine max/microbiology , Glycine max/physiology , Stress, Physiological
4.
AIMS Microbiol ; 7(3): 336-353, 2021.
Article in English | MEDLINE | ID: mdl-34708176

ABSTRACT

Endophytes colonizing plant tissue play an essential role in plant growth, development, stress tolerance and plant protection from soil-borne diseases. In this study, we report the diversity of cultivable endophytic bacteria associated with marigold (Calendula officinalis L.) by using 16S rRNA gene analysis and their plant beneficial properties. A total of 42 bacterial isolates were obtained from plant tissues of marigold. They belonged to the genera Pantoea, Enterobacter, Pseudomonas, Achromobacter, Xanthomonas, Rathayibacter, Agrobacterium, Pseudoxanthomonas, and Beijerinckia. Among the bacterial strains, P. kilonensis FRT12, and P. rhizosphaerae FST5 showed moderate or vigorous inhibition against three tested plant pathogenic fungi, F. culmorum, F. solani and R. solani. They also demonstrated the capability to produce hydrolytic enzymes and indole-3-acetic acid (IAA). Five out of 16 isolates significantly stimulated shoot and root growth of marigold in a pot experiment. The present study reveals that more than half of the bacterial isolates associated with marigold (C. officinalis L.) provided antifungal activity against one or more plant pathogenic fungi. Our findings suggest that medicinal plants with antimicrobial activity could be a source for selecting microbes with antagonistic activity against fungal plant pathogens or with plant growth stimulating potential. These isolates might be considered as promising candidates for the improvement of plant health.

5.
Microbiologyopen ; 8(9): e00850, 2019 09.
Article in English | MEDLINE | ID: mdl-31058468

ABSTRACT

During the last five decades, the Aral Sea has gradually changed from a saline water body to a hypersaline lake. Microbial community inhabiting the Aral Sea has been through a succession and continuous adaptation during the last 50 years of increasing salinization, but so far, the microbial diversity has not been explored. Prokaryotic diversity of the Large Aral Sea using cultivation-independent methods based on determination of environmental 16S rRNA gene sequences revealed a microbial community related to typical marine or (hyper) saline-adapted Bacteria and Archaea. The archaeal sequences were phylogenetically affiliated with the order Halobacteriales, with a large number of operational taxonomic units constituting a novel cluster in the Haloferacaceae family. Bacterial community analysis indicated a higher diversity with representatives belonging to Proteobacteria, Actinobacteria and Bacteroidetes. Many members of Alphaproteobacteria and Gammaproteobacteria were affiliated with genera like Roseovarius, Idiomarina and Spiribacter which have previously been found in marine or hypersaline waters. The majority of the phylotypes was most closely related to uncultivated organisms and shared less than 97% identity with their closest match in GenBank, indicating a unique community structure in the Large Aral Sea with mostly novel species or genera.


Subject(s)
Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Lakes/microbiology , Microbiota , Seawater/microbiology , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Environmental/genetics , DNA, Environmental/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Uzbekistan
6.
Saudi J Biol Sci ; 24(7): 1601-1608, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29062259

ABSTRACT

The effectiveness of plant growth - promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth - promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...