Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275302

ABSTRACT

Immunoassays based on antibodies as recognizing elements and enzymes as signal-generating modules are extensively used now in clinical lab diagnostics, food, and environmental analyses. However, the application of natural enzymes and antibodies has some drawbacks, such as relatively high manufacturing costs, thermal instability, and lot-to-lot variations that lower the reproducibility of results. Oligonucleotide aptamers are able to specifically bind their targets with high affinity and selectivity, so they represent a prospective alternative to protein antibodies for analyte recognition. Their main advantages include thermal stability and long shelf life, cost-efficient chemical synthesis, and negligible batch-to-batch variations. At the same time, a wide variety of non-protein peroxidase mimics are now available that show strong potential to replace protein enzymes. Here, we review and analyze non-protein biosensors that represent a nexus of these two concepts: aptamer-based sensors (aptasensors) with optical detection (colorimetric, luminescent, or fluorescent) based on different peroxidase mimics, such as DNAzymes, nanoparticles, or metal-organic frameworks.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Peroxidase , Prospective Studies , Reproducibility of Results , Peroxidases , Oligonucleotides , Biosensing Techniques/methods , Antibodies
2.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36613750

ABSTRACT

Among the great variety of anti-cancer therapeutic strategies, boron neutron capture therapy (BNCT) represents a unique approach that doubles the targeting accuracy due to the precise positioning of a neutron beam and the addressed delivery of boron compounds. We have recently demonstrated the principal possibility of using a cell-specific 2'-F-RNA aptamer for the targeted delivery of boron clusters for BNCT. In the present study, we evaluated the amount of boron-loaded aptamer inside the cell via two independent methods: quantitative real-time polymerase chain reaction and inductive coupled plasma-atomic emission spectrometry. Both assays showed that the internalized boron level inside the cell exceeds 1 × 109 atoms/cell. We have synthesized closo-dodecaborate conjugates of 2'-F-RNA aptamers GL44 and Waz, with boron clusters attached either at the 3'- or at the 5'-end. The influence of cluster localization was evaluated in BNCT experiments on U-87 MG human glioblastoma cells and normal fibroblasts and subsequent analyses of cell viability via real-time cell monitoring and clonogenic assay. Both conjugates of GL44 aptamer provided a specific decrease in cell viability, while only the 3'-conjugate of the Waz aptamer showed the same effect. Thus, an individual adjustment of boron cluster localization is required for each aptamer. The efficacy of boron-loaded 2'-F-RNA conjugates was comparable to that of 10B-boronophenylalanine, so this type of boron delivery agent has good potential for BNCT due to such benefits as precise targeting, low toxicity and the possibility to use boron clusters made of natural, unenriched boron.


Subject(s)
Boron Neutron Capture Therapy , Glioblastoma , Humans , Boron/metabolism , Boron Neutron Capture Therapy/methods , Glioblastoma/metabolism , Boron Compounds , Oligonucleotides , Phenylalanine/therapeutic use
3.
Biomedicines ; 8(11)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266394

ABSTRACT

Nucleic acid aptamers capable of affine and specific binding to their molecular targets have now established themselves as a very promising alternative to monoclonal antibodies for diagnostic and therapeutic applications. Although the main focus in aptamers' research and development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important. In this review, we consider the main features of aptamers that make them valuable molecular tools for rheumatologists, and summarize the studies on the selection and application of aptamers for protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects in the field, and issues that have yet to be addressed.

4.
Anal Biochem ; 611: 113886, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32795455

ABSTRACT

Biosensors that rely on aptamers as analyte-recognizing elements (also known as aptasensors) are gaining in popularity during recent years for analytical and biomedical applications. Among them, colorimetric ELISA-like systems seem very promising for biomarker detection in medical diagnostics. For their development, one should thoroughly consider the characteristics of the aptamers, with a particular focus on the secondary structure. In this study, we performed an in-depth structural study of previously selected hemoglobin-binding 2'-F-RNA aptamers using CD spectroscopy, enzymatic probing, and specific fluorophore binding. Only a combination of different assays allowed us to prove G-quadruplex formation for anti-hemoglobin 2'-F-RNA aptamers. We also demonstrated a possible application of these 2'-F-RNA aptamers for microplate colorimetric detection of human hemoglobin in both direct and sandwich formats.


Subject(s)
Aptamers, Nucleotide/chemistry , G-Quadruplexes , Hemoglobins/chemistry , Animals , Cattle , Colorimetry , Humans
5.
Int J Mol Sci ; 19(2)2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401748

ABSTRACT

Nucleic acid aptamers capable of selectively recognizing their target molecules have nowadays been established as powerful and tunable tools for biospecific applications, be it therapeutics, drug delivery systems or biosensors. It is now generally acknowledged that in vitro selection enables one to generate aptamers to almost any target of interest. However, the success of selection and the affinity of the resulting aptamers depend to a large extent on the nature and design of an initial random nucleic acid library. In this review, we summarize and discuss the most important features of the design of nucleic acid libraries for in vitro selection such as the nature of the library (DNA, RNA or modified nucleotides), the length of a randomized region and the presence of fixed sequences. We also compare and contrast different randomization strategies and consider computer methods of library design and some other aspects.


Subject(s)
Aptamers, Nucleotide/chemical synthesis , DNA/chemistry , RNA/chemistry , SELEX Aptamer Technique , Aptamers, Nucleotide/genetics , Base Pairing , DNA/genetics , DNA/metabolism , Gene Library , Nucleic Acid Conformation , RNA/genetics , RNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...