Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1216753, 2023.
Article in English | MEDLINE | ID: mdl-37533574

ABSTRACT

Background: The impact of dietary factors on glycaemic control in type 2 diabetes mellitus (T2DM) is well established. However, the effectiveness of transforming portion control into a practical innovation for glycaemic control in T2DM has not yet been established for counselling in nutrition. The aim of this study was to compare the effect of general counselling in nutrition (GCN) and a portioned meal box (PMB) on fasting blood glucose, glycated haemoglobin (HbA1c) and body composition. Methods: A randomised, parallel intervention trial was conducted over 12 weeks, with GCN: carbohydrate portion control concept by using food exchange lists (n = 25) and PMB: portioned meal box was set by energy requirements (n = 25). Results: Both GCN and PMB demonstrated reductions in HbA1c levels at the 6th and 12th weeks compared to baseline. However, no significant difference in HbA1c was observed between GCN and PMB at either the 6th or 12th week. Using PMB at least four times a week significantly decreased HbA1c during the intervention period (p = 0.021 and p < 0.001 for weeks 6 and 12 when compared with baseline, respectively). Changes in body composition were observed: body weight decrease in PMB only, body fat decrease and constant muscle mass in both groups. Both methods tended to relieve hunger and increased satiety in both groups. The satisfaction evaluation showed that participants preferred to use PMB over GCN (p = 0.001). Additionally, participants consumed less energy, carbohydrate and fat in PMB (p = 0.001, p = 0.019, and p = 0.001, respectively) and less energy and fat in GCN (p = 0.006 and p = 0.001, respectively). Conclusion: A better diet, either through GCN or PMB, can play an important role in improving dietary intake compliance and controlling blood glucose.

2.
J Environ Manage ; 279: 111659, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33310234

ABSTRACT

Currently, Thai livestock is rapidly expanding, especially the production of ruminants, chicken, and swine. The improper use of antibiotics will probably lead to an antimicrobial resistance problem. It has long been suspected that wastewater released from swine farms is a crucial aspect of the spread of antimicrobial resistance to the environment. Biogas systems are wastewater treatment systems commonly used on swine farms; however, little is known about the roles they play in the occurrence and transmission of resistant bacteria between biogas and non-biogas systems. This study collected pooled water, wastewater, and feces samples from five biogas farms and three non-biogas farms in Central Thailand. The samples were isolated to hemolytic E. coli (HEC) and non-hemolytic E. coli (NHEC) to test the drug resistance by using VITEK® 2 Compact (BioMérieux, USA) and detect resistant genes by using the polymerase chain reaction (PCR) technique to correlate the determined phenotypic and genotypic patterns. The results demonstrated that enumeration levels of E. coli ranged from 20.1 to 70.4 (MPN/100 ml), 105 to 107 (cfu/ml), and 105 to 109 (cfu/g), while they were 0-148.7 (MPN/100 ml), 105 to 107 (cfu/ml) and 105 to 109 (cfu/g) for water, wastewater and manure from biogas and non-biogas swine farms, respectively. The amount of E. coli in the sow feces samples was higher than the samples of nursery piglets on biogas farms at a 0.05 significant level (p < 0.05). The antimicrobial resistance indicated the relevant resistance characteristics of E. coli: the highest antimicrobial resistance was for ampicillin (AMP), followed by amoxicillin (AMX), tetracyclines (TET), chloramphenicol (C), and piperacillin (PIP), respectively. Multidrug resistance (MDR) of E. coli was 15 drugs: AMP-AMX-AMC-PIP-CEX-CEV-CPD-XNL-GM-IMP-SXT-C-TE (11.9%) and AMP-AMX-AMC-PIP-CEX-CEV-CPD-XNL-GM-IMP-SXT-C-ENR-MBR-TE (18.55%), which were the most commonly found in biogas and non-biogas swine farms, respectively. The blaTEM, tetA, sul2, and sul3 were dominantly resistant genes isolated from the water from both types of farm; while, blaTEM, aadA1, tetA, dfrA12, sul2, sul3, and cmlA were isolated from feces. The amount of E. coli in the final effluent from biogas swine farms was higher than the non-biogas swine farms; however, it was not significantly different at (p > 0.05). Furthermore, the findings of study found that genotypic characteristic of HEC showed similarity 100%. Thus, it was concluded that the levels of E. coli were accelerated in biogas wastewater treatment systems, and isolated E. coli demonstrated multidrug resistance. Even though E. coli was found in different locations, it showed relevant resistance characteristics. Therefore, regular monitoring of antimicrobial resistance on livestock farms is necessary for efficient management and drug uses on farms.


Subject(s)
Escherichia coli , Manure , Animals , Anti-Bacterial Agents/pharmacology , Biofuels , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Farms , Female , Microbial Sensitivity Tests , Swine , Thailand , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...