Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Pediatr Cardiol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512488

ABSTRACT

General anesthesia in children with idiopathic pulmonary arterial hypertension (PAH) carries an increased risk of peri-operative cardiorespiratory complications though risk stratifying individual children pre-operatively remains difficult. We report the incidence and echocardiographic risk factors for adverse events in children with PAH undergoing general anesthesia for cardiac catheterization. Echocardiographic, hemodynamic, and adverse event data from consecutive PAH patients are reported. A multivariable predictive model was developed from echocardiographic variables identified by Bayesian univariable logistic regression. Model performance was reported by area under the curve for receiver operating characteristics (AUCroc) and precision/recall (AUCpr) and a pre-operative scoring system derived (0-100). Ninety-three children underwent 158 cardiac catheterizations with mean age 8.8 ± 4.6 years. Adverse events (n = 42) occurred in 15 patients (16%) during 16 catheterizations (10%) including cardiopulmonary resuscitation (n = 5, 3%), electrocardiographic changes (n = 3, 2%), significant hypotension (n = 2, 1%), stridor (n = 1, 1%), and death (n = 2, 1%). A multivariable model (age, right ventricular dysfunction, and dilatation, pulmonary and tricuspid regurgitation severity, and maximal velocity) was highly predictive of adverse events (AUCroc 0.86, 95% CI 0.75 to 1.00; AUCpr 0.68, 95% CI 0.50 to 0.91; baseline AUCpr 0.10). Pre-operative risk scores were higher in those who had a subsequent adverse event (median 47, IQR 43 to 53) than in those who did not (median 23, IQR 15 to 33). Pre-operative echocardiography informs the risk of peri-operative adverse events and may therefore be useful both for consent and multi-disciplinary care planning.

2.
Respirology ; 28(3): 262-272, 2023 03.
Article in English | MEDLINE | ID: mdl-36172951

ABSTRACT

BACKGROUND AND OBJECTIVE: Pulmonary hypertension is a life-limiting complication of interstitial lung disease (ILD-PH). We investigated whether treatment with phosphodiesterase 5 inhibitors (PDE5i) in patients with ILD-PH was associated with improved survival. METHODS: Consecutive incident patients with ILD-PH and right heart catheterisation, echocardiography and spirometry data were followed from diagnosis to death, transplantation or censoring with all follow-up and survival data modelled by Bayesian methods. RESULTS: The diagnoses in 128 patients were idiopathic pulmonary fibrosis (n = 74, 58%), hypersensitivity pneumonitis (n = 17, 13%), non-specific interstitial pneumonia (n = 12, 9%), undifferentiated ILD (n = 8, 6%) and other lung diseases (n = 17, 13%). Final outcomes were death (n = 106, 83%), transplantation (n = 9, 7%) and censoring (n = 13, 10%). Patients treated with PDE5i (n = 50, 39%) had higher mean pulmonary artery pressure (median 38 mm Hg [interquartile range, IQR: 34, 43] vs. 35 mm Hg [IQR: 31, 38], p = 0.07) and percentage predicted forced vital capacity (FVC; median 57% [IQR: 51, 73] vs. 52% [IQR: 45, 66], p=0.08) though differences did not reach significance. Patients treated with PDE5i survived longer than untreated patients (median 2.18 years [95% CI: 1.43, 3.04] vs. 0.94 years [0.69, 1.51], p = 0.003) independent of all other prognostic markers by Bayesian joint-modelling (HR 0.39, 95% CI: 0.23, 0.59, p < 0.001) and propensity-matched analyses (HR 0.38, 95% CI: 0.22, 0.58, p < 0.001). Survival difference with treatment was significantly larger if right ventricular function was normal, rather than abnormal, at presentation (+2.55 years, 95% CI: -0.03, +3.97 vs. +0.98 years, 95% CI: +0.47, +2.00, p = 0.04). CONCLUSION: PDE5i treatment in ILD-PH should be investigated by a prospective randomized trial.


Subject(s)
Hypertension, Pulmonary , Lung Diseases, Interstitial , Humans , Phosphodiesterase 5 Inhibitors/therapeutic use , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Retrospective Studies , Bayes Theorem , Prospective Studies , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/drug therapy
3.
J Am Coll Cardiol ; 78(11): 1097-1110, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34503678

ABSTRACT

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by rare variants in sarcomere-encoding genes, but little is known about the clinical significance of these variants in the general population. OBJECTIVES: The goal of this study was to compare lifetime outcomes and cardiovascular phenotypes according to the presence of rare variants in sarcomere-encoding genes among middle-aged adults. METHODS: This study analyzed whole exome sequencing and cardiac magnetic resonance imaging in UK Biobank participants stratified according to sarcomere-encoding variant status. RESULTS: The prevalence of rare variants (allele frequency <0.00004) in HCM-associated sarcomere-encoding genes in 200,584 participants was 2.9% (n = 5,712; 1 in 35), and the prevalence of variants pathogenic or likely pathogenic for HCM (SARC-HCM-P/LP) was 0.25% (n = 493; 1 in 407). SARC-HCM-P/LP variants were associated with an increased risk of death or major adverse cardiac events compared with controls (hazard ratio: 1.69; 95% confidence interval [CI]: 1.38-2.07; P < 0.001), mainly due to heart failure endpoints (hazard ratio: 4.23; 95% CI: 3.07-5.83; P < 0.001). In 21,322 participants with both cardiac magnetic resonance imaging and whole exome sequencing, SARC-HCM-P/LP variants were associated with an asymmetric increase in left ventricular maximum wall thickness (10.9 ± 2.7 mm vs 9.4 ± 1.6 mm; P < 0.001), but hypertrophy (≥13 mm) was only present in 18.4% (n = 9 of 49; 95% CI: 9%-32%). SARC-HCM-P/LP variants were still associated with heart failure after adjustment for wall thickness (hazard ratio: 6.74; 95% CI: 2.43-18.7; P < 0.001). CONCLUSIONS: In this population of middle-aged adults, SARC-HCM-P/LP variants have low aggregate penetrance for overt HCM but are associated with an increased risk of adverse cardiovascular outcomes and an attenuated cardiomyopathic phenotype. Although absolute event rates are low, identification of these variants may enhance risk stratification beyond familial disease.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Sarcomeres/genetics , Aged , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cohort Studies , Deep Learning , Female , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Penetrance , Phenotype
4.
Ann Am Thorac Soc ; 18(6): 981-988, 2021 06.
Article in English | MEDLINE | ID: mdl-33735594

ABSTRACT

Rationale: Iron deficiency, in the absence of anemia, is common in patients with idiopathic and heritable pulmonary arterial hypertension (PAH) and is associated with a worse clinical outcome. Oral iron absorption may be impeded by elevated circulating hepcidin concentrations. The safety and benefit of parenteral iron replacement in this patient population is unclear. Objectives: To evaluate the safety and efficacy of parenteral iron replacement in PAH. Methods: In two randomized, double-blind, placebo-controlled 12-week crossover studies, 39 patients in Europe received a single infusion of ferric carboxymaltose (Ferinject) (1,000 mg or 15 mg/kg if weight <66.7 kg) or saline as placebo, and 17 patients in China received iron dextran (Cosmofer) (20 mg iron/kg body weight) or saline placebo. All patients had idiopathic or heritable PAH and iron deficiency at entry as defined by a serum ferritin <37 µg/L or iron <10.3 µmol/L or transferrin saturations <16.4%. Results: Both iron treatments were well tolerated and improved iron status. Analyzed separately and combined, there was no effect on any measure of exercise capacity (using cardiopulmonary exercise testing or 6-minute walk test) or cardiopulmonary hemodynamics, as assessed by right heart catheterization, cardiac magnetic resonance, or plasma NT-proBNP (N-terminal-pro hormone brain natriuretic peptide) at 12 weeks. Conclusions: Iron repletion by administration of a slow-release iron preparation as a single infusion to patients with PAH with iron deficiency without overt anemia was well tolerated but provided no significant clinical benefit at 12 weeks. Clinical trial registered with ClinicalTrials.gov (NCT01447628).


Subject(s)
Anemia, Iron-Deficiency , Pulmonary Arterial Hypertension , Anemia, Iron-Deficiency/drug therapy , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Familial Primary Pulmonary Hypertension , Humans , Iron , Treatment Outcome
5.
Nature ; 584(7822): 589-594, 2020 08.
Article in English | MEDLINE | ID: mdl-32814899

ABSTRACT

The inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a remnant of embryonic development1,2. The function of these trabeculae in adults and their genetic architecture are unknown. Here we performed a genome-wide association study to investigate image-derived phenotypes of trabeculae using the fractal analysis of trabecular morphology in 18,096 participants of the UK Biobank. We identified 16 significant loci that contain genes associated with haemodynamic phenotypes and regulation of cytoskeletal arborization3,4. Using biomechanical simulations and observational data from human participants, we demonstrate that trabecular morphology is an important determinant of cardiac performance. Through genetic association studies with cardiac disease phenotypes and Mendelian randomization, we find a causal relationship between trabecular morphology and risk of cardiovascular disease. These findings suggest a previously unknown role for myocardial trabeculae in the function of the adult heart, identify conserved pathways that regulate structural complexity and reveal the influence of the myocardial trabeculae on susceptibility to cardiovascular disease.


Subject(s)
Cardiovascular Diseases/genetics , Fractals , Genetic Predisposition to Disease , Heart/anatomy & histology , Heart/physiology , Myocardium/metabolism , Adult , Aged , Animals , Cardiovascular Diseases/physiopathology , Cytoskeleton/genetics , Cytoskeleton/physiology , Gene Knockout Techniques , Genetic Loci/genetics , Genome-Wide Association Study , Heart/embryology , Hemodynamics , Humans , Middle Aged , Myocardium/cytology , Oryzias/embryology , Oryzias/genetics , Phenotype
6.
Circulation ; 141(5): 387-398, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31983221

ABSTRACT

BACKGROUND: Dilated cardiomyopathy (DCM) is genetically heterogeneous, with >100 purported disease genes tested in clinical laboratories. However, many genes were originally identified based on candidate-gene studies that did not adequately account for background population variation. Here we define the frequency of rare variation in 2538 patients with DCM across protein-coding regions of 56 commonly tested genes and compare this to both 912 confirmed healthy controls and a reference population of 60 706 individuals to identify clinically interpretable genes robustly associated with dominant monogenic DCM. METHODS: We used the TruSight Cardio sequencing panel to evaluate the burden of rare variants in 56 putative DCM genes in 1040 patients with DCM and 912 healthy volunteers processed with identical sequencing and bioinformatics pipelines. We further aggregated data from 1498 patients with DCM sequenced in diagnostic laboratories and the Exome Aggregation Consortium database for replication and meta-analysis. RESULTS: Truncating variants in TTN and DSP were associated with DCM in all comparisons. Variants in MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1, and VCL were significantly enriched in specific patient subsets, with the last 2 genes potentially contributing primarily to early-onset forms of DCM. Overall, rare variants in these 12 genes potentially explained 17% of cases in the outpatient clinic cohort representing a broad range of adult patients with DCM and 26% of cases in the diagnostic referral cohort enriched in familial and early-onset DCM. Although the absence of a significant excess in other genes cannot preclude a limited role in disease, such genes have limited diagnostic value because novel variants will be uninterpretable and their diagnostic yield is minimal. CONCLUSIONS: In the largest sequenced DCM cohort yet described, we observe robust disease association with 12 genes, highlighting their importance in DCM and translating into high interpretability in diagnostic testing. The other genes analyzed here will need to be rigorously evaluated in ongoing curation efforts to determine their validity as Mendelian DCM genes but have limited value in diagnostic testing in DCM at present. This data will contribute to community gene curation efforts and will reduce erroneous and inconclusive findings in diagnostic testing.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Cardiomyopathy, Dilated/genetics , Genetic Predisposition to Disease , Genetic Testing , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adult , Cardiomyopathy, Dilated/diagnosis , Exome/genetics , Female , Genetic Heterogeneity , Humans , Male , Young Adult
8.
Eur Heart J Cardiovasc Imaging ; 21(4): 417-427, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31280289

ABSTRACT

AIMS: Left ventricular hypertrophy (LVH) in aortic stenosis (AS) varies widely before and after aortic valve replacement (AVR), and deeper phenotyping beyond traditional global measures may improve risk stratification. We hypothesized that machine learning derived 3D LV models may provide a more sensitive assessment of remodelling and sex-related differences in AS than conventional measurements. METHODS AND RESULTS: One hundred and sixteen patients with severe, symptomatic AS (54% male, 70 ± 10 years) underwent cardiovascular magnetic resonance pre-AVR and 1 year post-AVR. Computational analysis produced co-registered 3D models of wall thickness, which were compared with 40 propensity-matched healthy controls. Preoperative regional wall thickness and post-operative percentage wall thickness regression were analysed, stratified by sex. AS hypertrophy and regression post-AVR was non-uniform-greatest in the septum with more pronounced changes in males than females (wall thickness regression: -13 ± 3.6 vs. -6 ± 1.9%, respectively, P < 0.05). Even patients without LVH (16% with normal indexed LV mass, 79% female) had greater septal and inferior wall thickness compared with controls (8.8 ± 1.6 vs. 6.6 ± 1.2 mm, P < 0.05), which regressed post-AVR. These differences were not detectable by global measures of remodelling. Changes to clinical parameters post-AVR were also greater in males: N-terminal pro-brain natriuretic peptide (NT-proBNP) [-37 (interquartile range -88 to -2) vs. -1 (-24 to 11) ng/L, P = 0.008], and systolic blood pressure (12.9 ± 23 vs. 2.1 ± 17 mmHg, P = 0.009), with changes in NT-proBNP correlating with percentage LV mass regression in males only (ß 0.32, P = 0.02). CONCLUSION: In patients with severe AS, including those without overt LVH, LV remodelling is most plastic in the septum, and greater in males, both pre-AVR and post-AVR. Three-dimensional machine learning is more sensitive than conventional analysis to these changes, potentially enhancing risk stratification. CLINICAL TRIAL REGISTRATION: Regression of myocardial fibrosis after aortic valve replacement (RELIEF-AS); NCT02174471. https://clinicaltrials.gov/ct2/show/NCT02174471.


Subject(s)
Aortic Valve Stenosis , Heart Valve Prosthesis Implantation , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Female , Humans , Hypertrophy, Left Ventricular/diagnostic imaging , Machine Learning , Male , Ventricular Function, Left
9.
Nat Mach Intell ; 1: 95-104, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30801055

ABSTRACT

Motion analysis is used in computer vision to understand the behaviour of moving objects in sequences of images. Optimising the interpretation of dynamic biological systems requires accurate and precise motion tracking as well as efficient representations of high-dimensional motion trajectories so that these can be used for prediction tasks. Here we use image sequences of the heart, acquired using cardiac magnetic resonance imaging, to create time-resolved three-dimensional segmentations using a fully convolutional network trained on anatomical shape priors. This dense motion model formed the input to a supervised denoising autoencoder (4Dsurvival), which is a hybrid network consisting of an autoencoder that learns a task-specific latent code representation trained on observed outcome data, yielding a latent representation optimised for survival prediction. To handle right-censored survival outcomes, our network used a Cox partial likelihood loss function. In a study of 302 patients the predictive accuracy (quantified by Harrell's C-index) was significantly higher (p = .0012) for our model C=0.75 (95% CI: 0.70 - 0.79) than the human benchmark of C=0.59 (95% CI: 0.53 - 0.65). This work demonstrates how a complex computer vision task using high-dimensional medical image data can efficiently predict human survival.

10.
IEEE Trans Med Imaging ; 38(9): 2151-2164, 2019 09.
Article in English | MEDLINE | ID: mdl-30676949

ABSTRACT

Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image segmentation. However, most approaches have focused on learning image intensity features for segmentation, whereas the incorporation of anatomical shape priors has received less attention. In this paper, we combine a multi-task deep learning approach with atlas propagation to develop a shape-refined bi-ventricular segmentation pipeline for short-axis CMR volumetric images. The pipeline first employs a fully convolutional network (FCN) that learns segmentation and landmark localization tasks simultaneously. The architecture of the proposed FCN uses a 2.5D representation, thus combining the computational advantage of 2D FCNs networks and the capability of addressing 3D spatial consistency without compromising segmentation accuracy. Moreover, a refinement step is designed to explicitly impose shape prior knowledge and improve segmentation quality. This step is effective for overcoming image artifacts (e.g., due to different breath-hold positions and large slice thickness), which preclude the creation of anatomically meaningful 3D cardiac shapes. The pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialize atlas propagation. We validate the pipeline on 1831 healthy subjects and 649 subjects with pulmonary hypertension. Extensive numerical experiments on the two datasets demonstrate that our proposed method is robust and capable of producing accurate, high-resolution, and anatomically smooth bi-ventricular 3D models, despite the presence of artifacts in input CMR volumes.


Subject(s)
Cardiac Imaging Techniques/methods , Deep Learning , Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Algorithms , Humans
11.
Front Cardiovasc Med ; 6: 195, 2019.
Article in English | MEDLINE | ID: mdl-32039240

ABSTRACT

Cardiovascular conditions remain the leading cause of mortality and morbidity worldwide, with genotype being a significant influence on disease risk. Cardiac imaging-genetics aims to identify and characterize the genetic variants that influence functional, physiological, and anatomical phenotypes derived from cardiovascular imaging. High-throughput DNA sequencing and genotyping have greatly accelerated genetic discovery, making variant interpretation one of the key challenges in contemporary clinical genetics. Heterogeneous, low-fidelity phenotyping and difficulties integrating and then analyzing large-scale genetic, imaging and clinical datasets using traditional statistical approaches have impeded process. Artificial intelligence (AI) methods, such as deep learning, are particularly suited to tackle the challenges of scalability and high dimensionality of data and show promise in the field of cardiac imaging-genetics. Here we review the current state of AI as applied to imaging-genetics research and discuss outstanding methodological challenges, as the field moves from pilot studies to mainstream applications, from one dimensional global descriptors to high-resolution models of whole-organ shape and function, from univariate to multivariate analysis and from candidate gene to genome-wide approaches. Finally, we consider the future directions and prospects of AI imaging-genetics for ultimately helping understand the genetic and environmental underpinnings of cardiovascular health and disease.

12.
Eur Heart J Cardiovasc Imaging ; 20(6): 668-676, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30535300

ABSTRACT

AIMS: We sought to identify metabolic pathways associated with right ventricular (RV) adaptation to pulmonary hypertension (PH). We evaluated candidate metabolites, previously associated with survival in pulmonary arterial hypertension, and used automated image segmentation and parametric mapping to model their relationship to adverse patterns of remodelling and wall stress. METHODS AND RESULTS: In 312 PH subjects (47.1% female, mean age 60.8 ± 15.9 years), of which 182 (50.5% female, mean age 58.6 ± 16.8 years) had metabolomics, we modelled the relationship between the RV phenotype, haemodynamic state, and metabolite levels. Atlas-based segmentation and co-registration of cardiac magnetic resonance imaging was used to create a quantitative 3D model of RV geometry and function-including maps of regional wall stress. Increasing mean pulmonary artery pressure was associated with hypertrophy of the basal free wall (ß = 0.29) and reduced relative wall thickness (ß = -0.38), indicative of eccentric remodelling. Wall stress was an independent predictor of all-cause mortality (hazard ratio = 1.27, P = 0.04). Six metabolites were significantly associated with elevated wall stress (ß = 0.28-0.34) including increased levels of tRNA-specific modified nucleosides and fatty acid acylcarnitines, and decreased levels (ß = -0.40) of sulfated androgen. CONCLUSION: Using computational image phenotyping, we identify metabolic profiles, reporting on energy metabolism and cellular stress-response, which are associated with adaptive RV mechanisms to PH.


Subject(s)
Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/physiopathology , Imaging, Three-Dimensional , Magnetic Resonance Imaging, Cine/methods , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Remodeling/physiology , Adaptation, Physiological , Adult , Aged , Case-Control Studies , Female , Humans , Hypertension, Pulmonary/mortality , Male , Metabolic Networks and Pathways , Middle Aged , Multivariate Analysis , Reference Values , Regression Analysis , Retrospective Studies , Severity of Illness Index , Survival Analysis , Ventricular Dysfunction, Right/mortality , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Right/physiology
13.
Radiology ; 288(2): 386-395, 2018 08.
Article in English | MEDLINE | ID: mdl-29869959

ABSTRACT

Purpose To measure right ventricular (RV) trabecular complexity by its fractal dimension (FD) in healthy subjects and patients with pulmonary hypertension (PH) and to assess its relationship with hemodynamic and functional parameters and future cardiovascular events. Materials and Methods This retrospective study used data acquired from May 2004 to October 2013 in 256 patients with newly diagnosed PH who underwent cardiac MRI, right-sided heart catheterization, and 6-minute walk distance testing, with median follow-up of 4.0 years. A total of 256 healthy control subjects underwent cardiac MRI only. Biventricular FD, volumes, and function were assessed on short-axis cine images. Reproducibility was assessed with the intraclass correlation coefficient, correlation between variables was assessed with the Pearson correlation test, and mortality prediction was compared by using uni- and multivariable Cox regression analyses. Results RV FD reproducibility had an intraclass correlation coefficient of 0.97 (95% confidence interval [CI]: 0.96, 0.98). RV FD was higher in patients with PH (median, 1.310; interquartile range [IQR], 1.281-1.341) than in healthy subjects (median, 1.264; IQR, 1.242-1.295; P < .001), with the greatest difference near the apex. RV FD was associated with pulmonary vascular resistance (r = 0.30, P < .001). At univariable Cox regression analysis, RV FD was a significant predictor of death (hazard ratio [HR], 1.256; 95% CI: 1.011, 1.560; P = .04); however, at multivariable analysis, RV FD did not enable prediction of survival independently of conventional parameters of RV remodeling (HR, 1.179; 95% CI: 0.871, 1.596; P = .29). Conclusion Fractal analysis of RV trabecular complexity is a highly reproducible measure of remodeling in patients with PH that is associated with afterload, although the gain in survival prediction over traditional markers is not significant. Published under a CC BY 4.0 license. Online supplemental material is available for this article.


Subject(s)
Fractals , Hypertension, Pulmonary/physiopathology , Magnetic Resonance Imaging/methods , Ventricular Dysfunction, Right/diagnostic imaging , Ventricular Dysfunction, Right/physiopathology , Aged , Female , Heart Ventricles/diagnostic imaging , Hemodynamics/physiology , Humans , Hypertension, Pulmonary/diagnostic imaging , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Vascular Resistance/physiology
14.
IEEE Trans Med Imaging ; 37(2): 384-395, 2018 02.
Article in English | MEDLINE | ID: mdl-28961105

ABSTRACT

Incorporation of prior knowledge about organ shape and location is key to improve performance of image analysis approaches. In particular, priors can be useful in cases where images are corrupted and contain artefacts due to limitations in image acquisition. The highly constrained nature of anatomical objects can be well captured with learning-based techniques. However, in most recent and promising techniques such as CNN-based segmentation it is not obvious how to incorporate such prior knowledge. State-of-the-art methods operate as pixel-wise classifiers where the training objectives do not incorporate the structure and inter-dependencies of the output. To overcome this limitation, we propose a generic training strategy that incorporates anatomical prior knowledge into CNNs through a new regularisation model, which is trained end-to-end. The new framework encourages models to follow the global anatomical properties of the underlying anatomy (e.g. shape, label structure) via learnt non-linear representations of the shape. We show that the proposed approach can be easily adapted to different analysis tasks (e.g. image enhancement, segmentation) and improve the prediction accuracy of the state-of-the-art models. The applicability of our approach is shown on multi-modal cardiac data sets and public benchmarks. In addition, we demonstrate how the learnt deep models of 3-D shapes can be interpreted and used as biomarkers for classification of cardiac pathologies.


Subject(s)
Cardiac Imaging Techniques/methods , Imaging, Three-Dimensional/methods , Neural Networks, Computer , Algorithms , Cardiomyopathies/diagnostic imaging , Databases, Factual , Heart/diagnostic imaging , Humans , Magnetic Resonance Imaging
15.
Bioinformatics ; 34(1): 97-103, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28968671

ABSTRACT

Motivation: Left ventricular (LV) hypertrophy is a strong predictor of cardiovascular outcomes, but its genetic regulation remains largely unexplained. Conventional phenotyping relies on manual calculation of LV mass and wall thickness, but advanced cardiac image analysis presents an opportunity for high-throughput mapping of genotype-phenotype associations in three dimensions (3D). Results: High-resolution cardiac magnetic resonance images were automatically segmented in 1124 healthy volunteers to create a 3D shape model of the heart. Mass univariate regression was used to plot a 3D effect-size map for the association between wall thickness and a set of predictors at each vertex in the mesh. The vertices where a significant effect exists were determined by applying threshold-free cluster enhancement to boost areas of signal with spatial contiguity. Experiments on simulated phenotypic signals and SNP replication show that this approach offers a substantial gain in statistical power for cardiac genotype-phenotype associations while providing good control of the false discovery rate. This framework models the effects of genetic variation throughout the heart and can be automatically applied to large population cohorts. Availability and implementation: The proposed approach has been coded in an R package freely available at https://doi.org/10.5281/zenodo.834610 together with the clinical data used in this work. Contact: declan.oregan@imperial.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Genetic Association Studies/methods , Hypertrophy, Left Ventricular/diagnostic imaging , Imaging, Three-Dimensional/methods , Polymorphism, Single Nucleotide , Software , Female , Genetic Predisposition to Disease , Heart/diagnostic imaging , Humans , Hypertrophy, Left Ventricular/genetics , Male , Phenotype
17.
Radiology ; 283(2): 381-390, 2017 05.
Article in English | MEDLINE | ID: mdl-28092203

ABSTRACT

Purpose To determine if patient survival and mechanisms of right ventricular failure in pulmonary hypertension could be predicted by using supervised machine learning of three-dimensional patterns of systolic cardiac motion. Materials and Methods The study was approved by a research ethics committee, and participants gave written informed consent. Two hundred fifty-six patients (143 women; mean age ± standard deviation, 63 years ± 17) with newly diagnosed pulmonary hypertension underwent cardiac magnetic resonance (MR) imaging, right-sided heart catheterization, and 6-minute walk testing with a median follow-up of 4.0 years. Semiautomated segmentation of short-axis cine images was used to create a three-dimensional model of right ventricular motion. Supervised principal components analysis was used to identify patterns of systolic motion that were most strongly predictive of survival. Survival prediction was assessed by using difference in median survival time and area under the curve with time-dependent receiver operating characteristic analysis for 1-year survival. Results At the end of follow-up, 36% of patients (93 of 256) died, and one underwent lung transplantation. Poor outcome was predicted by a loss of effective contraction in the septum and free wall, coupled with reduced basal longitudinal motion. When added to conventional imaging and hemodynamic, functional, and clinical markers, three-dimensional cardiac motion improved survival prediction (area under the receiver operating characteristic curve, 0.73 vs 0.60, respectively; P < .001) and provided greater differentiation according to difference in median survival time between high- and low-risk groups (13.8 vs 10.7 years, respectively; P < .001). Conclusion A machine-learning survival model that uses three-dimensional cardiac motion predicts outcome independent of conventional risk factors in patients with newly diagnosed pulmonary hypertension. Online supplemental material is available for this article.


Subject(s)
Hypertension, Pulmonary/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Stroke Volume , Ventricular Dysfunction, Right/etiology , Aged , Female , Heart Ventricles/diagnostic imaging , Humans , Hypertension, Pulmonary/complications , Machine Learning , Male , Middle Aged , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Ventricular Dysfunction, Right/complications
18.
Nat Genet ; 49(1): 46-53, 2017 01.
Article in English | MEDLINE | ID: mdl-27869827

ABSTRACT

Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ∼1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease.


Subject(s)
Cardiomyopathy, Dilated/genetics , Connectin/genetics , Genetic Variation/genetics , Heart/physiology , Animals , Cardiomyopathy, Dilated/pathology , Case-Control Studies , Cohort Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Rats
19.
Article in English | MEDLINE | ID: mdl-27502059

ABSTRACT

BACKGROUND: Cardiac mass and volumes are often elevated in athletes, but it is not known whether moderate physical activity is also associated with cardiac dilatation and hypertrophy in a healthy adult population. METHODS AND RESULTS: In total, 1096 adults (54% female, median age 39 years) without cardiovascular disease or cardiomyopathy-associated genetic variants underwent cardiac magnetic resonance imaging to determine biventricular volumes and function. Physical activity was assessed using a validated activity questionnaire. The relationship between cardiac parameters and activity was assessed using multiple linear regression adjusting for age, sex, race, and systolic blood pressure. Logistic regression was performed to determine the effect of activity on the likelihood of subjects having cardiac dilatation or hypertrophy according to standard cardiac magnetic resonance normal ranges. Increasing physical activity was associated with greater left ventricular (LV) mass (ß=0.23; P<0.0001) and elevated LV and right ventricular volumes (LV: ß=0.26, P<0.0001; right ventricular: ß=0.26, P<0.0001). Physical activity had a larger effect on cardiac parameters than systolic blood pressure (0.06≤ß≤0.21) and a similar effect to age (-0.20≤ß≤-0.31). Increasing physical activity was a risk factor for meeting imaging criteria for LV hypertrophy (adjusted odds ratio 2.1; P<0.0001), LV dilatation (adjusted odds ratio 2.2; P<0.0001), and right ventricular dilatation (adjusted odds ratio 2.2; P<0.0001). CONCLUSIONS: Exercise-related cardiac remodeling is not confined to athletes, and there is a risk of overdiagnosing cardiac dilatation or hypertrophy in a proportion of active, healthy adults.


Subject(s)
Cardiomegaly, Exercise-Induced , Exercise , Ventricular Function, Left , Ventricular Function, Right , Ventricular Remodeling , Adaptation, Physiological , Adolescent , Adult , Aged , Aged, 80 and over , Cardiomegaly/diagnostic imaging , Diagnostic Errors , Female , Healthy Volunteers , Humans , Linear Models , Logistic Models , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Odds Ratio , Predictive Value of Tests , Prospective Studies , Stroke Volume , Surveys and Questionnaires , United Kingdom , Young Adult
20.
J Cardiovasc Magn Reson ; 18(1): 32, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27245154

ABSTRACT

BACKGROUND: Although obesity is associated with alterations in left ventricular (LV) mass and volume which are of prognostic significance, widely differing patterns of remodelling have been attributed to adiposity. Our aim was to define the relationship between body composition and LV geometry using three-dimensional cardiovascular magnetic resonance. METHODS: In an observational study 1530 volunteers (55 % female, mean age 41.3 years) without known cardiovascular disease underwent investigation including breath-hold high spatial resolution 3D cines. Atlas-based segmentation and co-registration was used to create a statistical model of wall thickness (WT) and relative wall thickness (RWT) throughout the LV. The relationship between bio-impedence body composition and LV geometry was assessed using 3D regression models adjusted for age, systolic blood pressure (BP), gender, race and height, with correction to control the false discovery rate. RESULTS: LV mass was positively associated with fat mass in women but not in men (LV mass: women ß = 0.11, p < 0.0001; men ß = -0.01, p = 0.82). The 3D models revealed that in males fat mass was strongly associated with a concentric increase in relative wall thickness (RWT) throughout most of the LV (ß = 0.37, significant area = 96 %) and a reduced mid-ventricular cavity (ß = -0.22, significant area = 91 %). In women the regional concentric hypertrophic association was weaker, and the basal lateral wall showed an inverse relationship between RWT and fat mass (ß = -0.11, significant area = 4.8 %). CONCLUSIONS: In an adult population without known cardiovascular disease increasing body fat is predominately associated with asymmetric concentric hypertrophy independent of systolic BP, with women demonstrating greater cavity dilatation than men. Conventional mass and volume measurements underestimate the impact of body composition on LV structure due to anatomic variation in remodelling.


Subject(s)
Adiposity , Heart Ventricles/diagnostic imaging , Hypertrophy, Left Ventricular/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Obesity/complications , Adolescent , Adult , Aged , Aged, 80 and over , Breath Holding , Cross-Sectional Studies , Electric Impedance , Female , Heart Ventricles/physiopathology , Humans , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/physiopathology , Male , Middle Aged , Obesity/diagnosis , Obesity/physiopathology , Predictive Value of Tests , Prospective Studies , Sex Factors , Ventricular Function, Left , Ventricular Remodeling , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...