Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 5(7): e02044, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31338465

ABSTRACT

The Gardenia, traditional medicinal plant used from ancient time to increase appetite and other medicinal uses has been employed for the synthesis of superparamagnetic α-Fe2O3 nanoparticles (NPs). The plant extracts unveiled its bifunctional nature through the reducing ferric ions by phenolic groups and capping nature through the -OH bonding over the NPs surface. The prepared NPs exhibits α-Fe2O3 phase among iron oxides and spherical morphology with an average size around 5 nm. The magnetic measurements proved the superparamagnetic behavior of NPs with non-saturating MS value of 8.5 emu/g at room temperature (300 K). Further, the hyperthermia study reveals, the NPs achieved a temperature of 40 °C and 43 °C within 6 min and reaches up to 43 °C and 45 °C within 10 min only for 5 µg/mL and 10 µg/mL concentrations respectively. Based on the heating profile of NPs, the SAR values (167.7 Oe, 300 MHz) calculated and are found to be around 62.75 W/g and 24.38 W/g for 5 µg/mL and 10 µg/mL NPs concentrations respectively. Subsequently, these have been used for toxicity assays, which presented enhanced cytotoxic effects on human mesenchymal cells lines proving them as a potential candidate for the biomedical applications.

2.
J Appl Microbiol ; 105(1): 14-24, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18266699

ABSTRACT

AIMS: To isolate the potential micro-organism for the degradation of textile disperse dye Brown 3 REL and to find out the reaction mechanism. METHODS AND RESULTS: 16S rDNA analysis revealed an isolate from textile effluent contaminated soil as Bacillus sp. VUS and was able to degrade (100%) dye Brown 3REL within 8 h at static anoxic condition. A significant increase in the activities of lignin peroxidase, laccase and NADH-DCIP reductase was observed up to complete decolourization of Brown 3REL. The optimum temperature required for degradation was 40 degrees C and pH 6.5-12.0. Phyto-toxicity and chemical oxygen demand revealed nontoxic products of dye degradation. The biodegradation was monitored by UV-VIS, FTIR spectroscopy and HPLC. The final products 6,8-dichloro-quinazoline-4-ol and cyclopentanone were characterized by gas chromatography-mass spectrometry. This Bacillus sp. VUS also decolourized (80%) textile dye effluent within 12 h. CONCLUSIONS: This study suggests that Bacillus sp. VUS could be a useful tool for textile effluent treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: The newly isolated Bacillus sp. VUS decolourized 16 textile dyes and textile dye effluent also. It achieved complete biodegradation of Brown 3REL. Phytotoxicity study demonstrated no toxicity of the biodegraded products for plants with respect to Triticum aestivum and Sorghum bicolor.


Subject(s)
Bacillus/metabolism , Coloring Agents/metabolism , Industrial Waste , Soil Microbiology , Textile Industry , Bacillus/genetics , Bacteriological Techniques , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Coloring Agents/chemistry , DNA, Ribosomal/analysis , Ribotyping/methods , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...