Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(10): 106802, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31573288

ABSTRACT

Single dopant atoms or dopant-related defect centers in a solid state matrix are of particular importance among the physical systems proposed for quantum computing and communication, due to their potential to realize a scalable architecture compatible with electronic and photonic integrated circuits. Here, using a deterministic source of single laser-cooled Pr^{+} ions, we present the fabrication of arrays of praseodymium color centers in yttrium-aluminum-garnet substrates. The beam of single Pr^{+} ions is extracted from a Paul trap and focused down to 30(9) nm. Using a confocal microscope, we determine a conversion yield into active color centers of up to 50% and realize a placement precision of 34 nm.

2.
Phys Rev Lett ; 117(4): 043001, 2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27494469

ABSTRACT

We realize a single particle microscope by using deterministically extracted laser-cooled ^{40}Ca^{+} ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8±1.0 nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1 µm circular hole structure to a precision of 2.7 nm using only 579 probe particles.

3.
Science ; 352(6283): 325-9, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27081067

ABSTRACT

Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10(-22)joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms.

5.
Appl Opt ; 47(9): 1239-46, 2008 Mar 20.
Article in English | MEDLINE | ID: mdl-18709070

ABSTRACT

We demonstrate a method of controlling the alignment of a laser beam to a Fabry-Perot resonator through synchronous detection of the misalignment arising from modulating the orientation of a single beam-steering mirror. The horizontal and vertical tilt of the mirror are modulated in quadrature to drive a circular motion of the beam orientation. A corresponding modulation of the intensity of the optical field circulating in the cavity is measured at either the reflected or transmitted port and demodulated synchronously to derive two error signals to indicate the vertical and horizontal misalignment. These signals are fed back to the beam-steering mirror to suppress fluctuations below 30 Hz. This method avoids the complexity of monitoring off-axis cavity modes and is particularly effective in the case where unwanted pointing fluctuations are introduced by one or two elements in the optical setup. We have applied the technique to two Fabry-Perot resonators in use as precision frequency references, delivering a result of 10 dB suppression of alignment fluctuations at 1 Hz and an improvement in frequency stability by up to a factor of 4.

6.
Article in English | MEDLINE | ID: mdl-17523556

ABSTRACT

The most common time-domain measure frequency stability, the Allan variance, is typically estimated using a frequency counter. Close examination the operation of modern high-resolution frequency counters shows that they do not make measurements in the commonly assumed. The consequence is that the results typically reported by many laboratories using these counters are not, in fact, the Allan variance, but a distorted representation. We elucidate the action of these counters by consideration of their operation in the Fourier domain, and demonstrate that the difference between the actual Allan variance and that delivered by these counters can very significant for some types of oscillators. We also discuss ways to avoid, or account for, a distorted estimation of Allan variance.

SELECTION OF CITATIONS
SEARCH DETAIL
...