Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 338: 139349, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37385480

ABSTRACT

This study investigates the potential role of Juglans sp. root extract-mediated copper oxide nanoparticles of Luffa cylindrica seed oil (LCSO) into methyl esters. The synthesized green nanoparticle was characterized by Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Scanning electron microscopy (SEM) spectroscopies to find out the crystalline size (40 nm), surface morphology (rod shape), particle size (80-85 nm), and chemical composition (Cu = 80.25% & O = 19.75%), accordingly. The optimized protocol for the transesterification reaction was adjusted as oil to methanol molar ratio (1:7), copper oxide nano-catalyst concentration (0.2 wt %), and temperature (90 °C) corresponding to the maximum methyl esters yield of 95%. The synthesized methyl esters were characterized by GC-MS, 1H NMR, 13C NMR, and FT-IR studies to know and identify the chemical composition of newly synthesized Lufa biodiesel. The fuel properties of Luffa cylindrica seed oil biofuel were checked and compared with the American Biodiesel standards (ASTM) (D6751-10). Finally, it is commendable to use biodiesel made from wild, uncultivated, and non-edible Lufa cylindrica to promote and adopt a cleaner and sustainable energy method. The acceptance and implementation of the green energy method may result in favourable environmental effects, which in turn may lead to better societal and economic development.


Subject(s)
Luffa , Nanoparticles , Esters , Copper , Plant Oils/chemistry , Biofuels/analysis , Spectroscopy, Fourier Transform Infrared , Esterification , Oxides , Catalysis
2.
Chemosphere ; 310: 136838, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36244423

ABSTRACT

Introduction of waste and non-edible oil seeds coupled with green nanotechnology offered a pushover to sustainable and economical biofuels and bio refinery production globally. The current study encompasses the synthesis and application of novel green, highly reactive and recyclable bismuth oxide nanocatalyst derived from Euphorbia royealeana (Falc.) Boiss. leaves extract via biological method for sustainable biofuel synthesis from highly potent Cannabis sativa seed oil (34% w/w) via membrane reactors. Advanced techniques such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Diffraction X-Ray (EDX), and FT-IR were employed to illustrate the newly synthesized green bismuth oxide nanoparticles. 92% of FAMEs were produced under optimal reaction conditions such as a 1.5% w/w catalyst weight, 1:12 oil to methanol molar ratio, and a reaction temperature of 92 ⸰C for 3.5 h via membrane reactor. The synthesized Cannabis biodiesel was identified using the FT-IR and GC-MS techniques. The fuel properties of synthesized biofuels (acid number 0.203 mg KOH/g, density 0.8623 kg/L, kinematic viscosity 5.32 cSt, flash point 80 °C, pour point -11 °C, cloud point -11 °C, and Sulfur 0.00047 wt %, and carbon residues 0.2) were studied and established to be comparable with internationally set parameters. The experimental data (R2 = 0.997) shows that this reaction follow pseudo first-order kinetics. These findings affirm the application of green bismuth oxide nanoparticles as economical, highly reactive and eco-friendly candidate for industrial scale biodiesel production from non-edible oil seeds.


Subject(s)
Biofuels , Nanoparticles , Biofuels/analysis , Esterification , Spectroscopy, Fourier Transform Infrared , Catalysis , Plant Oils/chemistry
3.
Microsc Res Tech ; 85(9): 3245-3255, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35762644

ABSTRACT

Biodiesel is a sustainable, inexpensive, and alternative energy source produced from vegetable oils and animal fats. Precise and authentic identification of oil yielding plant species is very crucial. Therefore, scanning electron microscopy (SEM) was employed in our current investigation to study micromorphological characteristics of ten novel oil yielding seeds for their reliable identification. Macromorphological characters of sample seeds were explored by light microscopy. Seed size varied from 16 to 6.2 mm in length and 18.4-4.5 mm in width. Seed shape varied from ovoid to cordial and color from beige to brown. Seed oil content ranged from 25% to 45% (w/w). Whereas free fatty acid (FFA) content of seed oil varied from 0.42 to 3.4 mg KOH/g. Biodiesel potential of Chamaerops humilis was found to be highest (98%) in all. Besides, ultra-structural observation of seeds demonstrated variation in surface sculpturing which varied from rugous, reticulate, perforate, striate, and webby. Periclinal wall arrangements varied from rough, ridged, depressed, thick and curved whereas, anticlinal walls pattern showed variation from wavy, smooth, raised, deep and depressed. It was ultimately concluded that Scanning electron microscopy could serve as an advanced tool representing hidden ultra-structural characters of seeds. It offers significant knowledge to researchers and local community for their accurate and genuine identification. RESEARCH HIGHLIGHTS: Non-edible oil yielding seeds as promising source of bioenergy. Scanning electron microscopy (SEM) as reliable tool for identification. Variation in Micromorphological characters among selected seeds. Classification of non-edible oil yielding plants via micromorphological characters.


Subject(s)
Biofuels , Electrons , Biofuels/analysis , Microscopy, Electron, Scanning , Plant Oils/analysis , Seeds/ultrastructure
4.
Chemosphere ; 291(Pt 2): 132780, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34767846

ABSTRACT

The present work investigates the proficiency of green silver oxide nanocatalyst synthesised from Monotheca buxifolia (Falc.) Dcne. leaves extract, and their application for biodiesel synthesis from novel Prunus bokhariensis seed oil (non-edible). The seed oil content of 55% and FFA content of 0.80 mg KOH/g were reported. Several analytical tools (EDX, FT-IR, SEM and XRD) were used to characterise the Ag2O nanocatalyst. Maximum (89%) FAME yield of the PBSOB (Prunus bokhariensis seed oil biodiesel) was achieved at ambient transesterification conditions i.e. 3.5 wt% nanocatalyst loading, 2.5 h reaction time, 130 °C of reaction temperature and 12:1 alcohol to oil ratio. The synthesised PBSOB was additionally characterised by analytical methods like, GC-MS and FT-IR. The different aspects of fuel were identified i.e. flash point (84 °C), kinematic viscosity (4.01 cSt @ 40 °C), sulphur content (0.0003 wt %), density (0.853 kg/L) and acid number (0.167 mg KOH/g). All the above properties were verified and agreed well with biodiesel international standards (European Union (14214), China GB/T (20828) and ASTM (6751, 951). In general, Prunus bokhariensis seed oil and Ag2O nanocatalyst seem to be remarkably active, cheap and stable candidates for the biodiesel industry in future.


Subject(s)
Biofuels , Prunus , Biofuels/analysis , Catalysis , Esterification , Oxides , Plant Oils , Silver Compounds , Spectroscopy, Fourier Transform Infrared
5.
Chemosphere ; 278: 130469, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33839393

ABSTRACT

The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.


Subject(s)
Biofuels , Plant Oils , Biofuels/analysis , Catalysis , Esterification , Nickel , Spectroscopy, Fourier Transform Infrared
6.
Microsc Res Tech ; 83(2): 165-175, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31663216

ABSTRACT

Exploration of substitute energy feed-stocks is the much-debated topic in the scientific society due to increasing power crises and related ecological concerns. As a source of sustainable energy, biodiesel turns out to be the best alternative to petro fuels. In this context, nonedible oil-producing seeds might be a potential source for biodiesel production owing to their environment-friendly nature and cost-effectiveness. The current study, consequently, deals with the investigation and identification of micro-morphological characters between six novel nonedible oil-bearing seeds employing scanning electron microscopy as possible biodiesel feed-stocks. Light microscopic examinations show that seed size varies from 0.3 to 1.3 cm in width and 0.5 to 1.5 cm in. Additionally, a large difference in seed color ranges from dark brown, black, and various shades of light brown was also witnessed. The FFA content of the seeds ranges in 0.3-4.1 mg KOH/g, and the seed oil content fall in 30-65% (w/w) range. SEM-mediated seed ultrastructure investigations displays greater variation in seed size, shape, color, periclinal wall shape, and sculpturing and so on. All the seeds differ from rounded, ovoid, ovate, oblong, flattened, and elliptical shape. Greater variation in seed wall structure has been seen from angular, entire, irregular, straight, elongated, smooth, and polygonal. The periclinal wall arrangements show alteration from flat, depressed, elevated, smooth, pentagonal, bullate, and coarse seed margins. The results obtained from the current study suggest that scanning electron microscopy could be a beneficial tool in vitalizing the hidden micromorphological characters among various nonedible oil producing seeds, which eventually helps in exploration, correct identification, seed classification, and authentication in future.

SELECTION OF CITATIONS
SEARCH DETAIL
...