Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-27913341

ABSTRACT

Nondestructive evaluation methods rely on prior knowledge of the expected interaction of ultrasonic waves with defects to inform detection and characterization decisions. Wavefield imaging, which refers to the measurement of signals originating from a spatially fixed source on a 2-D rectilinear grid, can be applied to visualize the effect of a subsurface scatterer on surface-measured wave motion. Here, obliquely incident shear waves are directed at the far surface of a plate containing a through-hole using the well-known angle-beam ultrasonic inspection method. A laser vibrometer and laboratory scanner are used to record the resulting out-of-plane motion on the plate surface in the vicinity of the through-hole both before and after a far-surface corner notch is introduced and subsequently enlarged. Waves scattered from the notch are isolated from the incident and hole-scattered waves via baseline subtraction of wavefields. The scattered wavefields are then filtered in the frequency-wavenumber domain to separate Rayleigh, shear, and longitudinal contributions to the scattered wavefield. The filtered wavefields are interpolated in space to obtain 2-D radial wavefield slices originating at the base of the notch. Each radial slice is analyzed to quantify scattering as a function of observation direction, resulting in Rayleigh, shear, and longitudinal scattering profiles for each notch size. The results are compared for four different notch sizes and two transducer orientations.

SELECTION OF CITATIONS
SEARCH DETAIL
...