Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Cell Biol ; 101(5): 444-457, 2023 05.
Article in English | MEDLINE | ID: mdl-36967659

ABSTRACT

Helicobacter pylori (H. pylori) infection can trigger chronic gastric inflammation perpetuated by overactivation of the innate immune system, leading to a cascade of precancerous lesions culminating in gastric cancer. However, key regulators of innate immunity that promote H. pylori-induced gastric pathology remain ill-defined. The innate immune cytosolic DNA sensor absent in melanoma 2 (AIM2) contributes to the pathogenesis of numerous autoimmune and chronic inflammatory diseases, as well as cancers including gastric cancer. We therefore investigated whether AIM2 contributed to the pathogenesis of Helicobacter-induced gastric disease. Here, we reveal that AIM2 messenger RNA and protein expression levels are elevated in H. pylori-positive versus H. pylori-negative human gastric biopsies. Similarly, chronic Helicobacter felis infection in wild-type mice augmented Aim2 gene expression levels compared with uninfected controls. Notably, gastric inflammation and hyperplasia were less severe in H. felis-infected Aim2-/- versus wild-type mice, evidenced by reductions in gastric immune cell infiltrates, mucosal thickness and proinflammatory cytokine and chemokine release. In addition, H. felis-driven proliferation and apoptosis in both gastric epithelial and immune cells were largely attenuated in Aim2-/- stomachs. These observations in Aim2-/- mouse stomachs correlated with decreased levels of inflammasome activity (caspase-1 cleavage) and the mature inflammasome effector cytokine, interleukin-1ß. Taken together, this work uncovers a pathogenic role for the AIM2 inflammasome in Helicobacter-induced gastric disease, and furthers our understanding of the host immune response to a common pathogen and the complex and varying roles of AIM2 at different stages of cancerous and precancerous gastric disease.


Subject(s)
Felis , Helicobacter , Precancerous Conditions , Stomach Neoplasms , Animals , Humans , Mice , Cytokines/metabolism , DNA-Binding Proteins/metabolism , Felis/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Helicobacter/metabolism , Inflammasomes/metabolism , Inflammation/pathology , Precancerous Conditions/pathology
2.
Gut ; 71(8): 1515-1531, 2022 08.
Article in English | MEDLINE | ID: mdl-34489308

ABSTRACT

OBJECTIVE: The absent in melanoma 2 (AIM2) cytosolic pattern recognition receptor and DNA sensor promotes the pathogenesis of autoimmune and chronic inflammatory diseases via caspase-1-containing inflammasome complexes. However, the role of AIM2 in cancer is ill-defined. DESIGN: The expression of AIM2 and its clinical significance was assessed in human gastric cancer (GC) patient cohorts. Genetic or therapeutic manipulation of AIM2 expression and activity was performed in the genetically engineered gp130 F/F spontaneous GC mouse model, as well as human GC cell line xenografts. The biological role and mechanism of action of AIM2 in gastric tumourigenesis, including its involvement in inflammasome activity and functional interaction with microtubule-associated end-binding protein 1 (EB1), was determined in vitro and in vivo. RESULTS: AIM2 expression is upregulated by interleukin-11 cytokine-mediated activation of the oncogenic latent transcription factor STAT3 in the tumour epithelium of GC mouse models and patients with GC. Genetic and therapeutic targeting of AIM2 in gp130 F/F mice suppressed tumourigenesis. Conversely, AIM2 overexpression augmented the tumour load of human GC cell line xenografts. The protumourigenic function of AIM2 was independent of inflammasome activity and inflammation. Rather, in vivo and in vitro AIM2 physically interacted with EB1 to promote epithelial cell migration and tumourigenesis. Furthermore, upregulated expression of AIM2 and EB1 in the tumour epithelium of patients with GC was independently associated with poor patient survival. CONCLUSION: AIM2 can play a driver role in epithelial carcinogenesis by linking cytokine-STAT3 signalling, innate immunity and epithelial cell migration, independent of inflammasome activation.


Subject(s)
Melanoma , Stomach Neoplasms , Animals , Carcinogenesis/genetics , Cell Movement/genetics , Cytokine Receptor gp130/metabolism , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Immunity, Innate/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , Mice , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/pathology , Up-Regulation
3.
Cytokine ; 143: 155520, 2021 07.
Article in English | MEDLINE | ID: mdl-33875334

ABSTRACT

Chronic lung diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis represent a major burden on healthcare systems with limited effective therapeutic options. Developing effective treatments for these debilitating diseases requires an understanding of how alterations at the molecular level affect lung macroscopic architecture. A common theme among these lung disorders is the presence of an underlying dysregulated immune system which can lead to sustained chronic inflammation. In this respect, several inflammatory cytokines have been implicated in the pathogenesis of lung diseases, thus leading to the notion that cytokines are attractive therapeutic targets for these disorders. In this review, we discuss and highlight the recent breakthroughs that have enhanced our understanding of the role of the interleukin (IL)-6 family of cytokines in lung homeostasis and chronic diseases including asthma, COPD, lung fibrosis and lung cancer.


Subject(s)
Interleukin-6/metabolism , Respiratory System/metabolism , Respiratory Tract Diseases/metabolism , Animals , Humans , Models, Biological , Regeneration , Respiratory System/pathology , Respiratory System/virology , Respiratory Tract Diseases/virology , Signal Transduction
4.
Neurobiol Dis ; 134: 104640, 2020 02.
Article in English | MEDLINE | ID: mdl-31639411

ABSTRACT

Mutations in the GAP activity toward RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2 and NPRL3) have been associated with focal epilepsy and focal cortical dysplasia (FCD). GATOR1 functions as an inhibitor of the mTORC1 signalling pathway, indicating that the downstream effects of mTORC1 deregulation underpin the disease. However, the vast majority of putative disease-causing variants have not been functionally assessed for mTORC1 repression activity. Here, we develop a novel in vitro functional assay that enables rapid assessment of GATOR1-gene variants. Surprisingly, of the 17 variants tested, we show that only six showed significantly impaired mTORC1 inhibition. To further investigate variant function in vivo, we generated a conditional Depdc5 mouse which modelled a 'second-hit' mechanism of disease. Generation of Depdc5 null 'clones' in the embryonic brain resulted in mTORC1 hyperactivity and modelled epilepsy and FCD symptoms including large dysmorphic neurons, defective migration and lower seizure thresholds. Using this model, we validated DEPDC5 variant F164del to be loss-of-function. We also show that Q542P is not functionally compromised in vivo, consistent with our in vitro findings. Overall, our data show that mTORC1 deregulation is the central pathological mechanism for GATOR1 variants and also indicates that a significant proportion of putative disease variants are pathologically inert, highlighting the importance of GATOR1 variant functional assessment.


Subject(s)
Epilepsies, Partial/metabolism , Epilepsy/metabolism , GTPase-Activating Proteins/genetics , Malformations of Cortical Development, Group I/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Epilepsies, Partial/genetics , Epilepsy/genetics , GTPase-Activating Proteins/metabolism , Genetic Techniques , HEK293 Cells , Humans , Malformations of Cortical Development, Group I/genetics , Mice , Mice, Knockout , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...