Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytother Res ; 31(7): 1039-1045, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28524381

ABSTRACT

Gallic acid (GA) is a polyphenol natural compound found in many medicinal plant species, including pomegranate rind (Punica granatum L.), and has been shown to have antiinflammatory and antibacterial properties. Pomegranate rind is used to treat bacterial and fungal pathogens in Uyghur and other systems of traditional medicine, but, surprisingly, the effects of GA on antifungal activity have not yet been reported. In this study, we aimed to investigate the inhibitory effects of GA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the NCCLS (M38-A and M27-A2) standard method in vitro, and GA was found to have a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 43.75 and 83.33 µg/mL. Gallic acid was also active against three Candida strains, with MICs between 12.5 and 100.0 µg/mL. The most sensitive Candida species was Candida albicans (MIC = 12.5 µg/mL), and the most sensitive filamentous species was Trichophyton rubrum (MIC = 43.75 µg/mL), which was comparable in potency to the control, fluconazole. The mechanism of action was investigated for inhibition of ergosterol biosynthesis using an HPLC-based assay and an enzyme linked immunosorbent assay. Gallic acid reduced the activity of sterol 14α-demethylase P450 (CYP51) and squalene epoxidase in the T. rubrum membrane, respectively. In vivo model demonstrated that intraperitoneal injection administration of GA (80 mg/kg d) significantly enhanced the cure rate in a mice infection model of systemic fungal infection. Overall, our results confirm the antifungal effects of GA and suggest a mechanism of action, suggesting that GA has the potential to be developed further as a natural antifungal agent for clinical use. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Gallic Acid/pharmacology , Animals , Candida/drug effects , Candidiasis/drug therapy , Female , Fluconazole/pharmacology , Male , Mice, Inbred ICR , Microbial Sensitivity Tests , Trichophyton/drug effects
2.
Phytother Res ; 29(7): 1019-25, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25919446

ABSTRACT

Ellagic acid (EA) has been shown to have antioxidant, antibacterial, and anti-inflammatory activities. In Uighur traditional medicine, Euphorbia humifusa Willd is used to treat fungal diseases, and recent studies suggest that it is the EA content which is responsible for its therapeutic effect. However, the effects of EA on antifungal activity have not yet been reported. This study aimed to investigate the inhibitory effect of EA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the National Committee for Clinical Laboratory Standards (M38-A and M27-A2) standard method in vitro. EA had a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 18.75 and 58.33 µg/ml. EA was also active against two Candida strains, with MICs between 25.0 and 75.0 µg/ml. It was inactive against Candida glabrata. The susceptibility of six species of dermatophytes to EA was comparable with that of the commercial antifungal, fluconazole. The most sensitive filamentous species was Trichophyton rubrum (MIC = 18.75 µg/ml). Studies on the mechanism of action using an HPLC-based assay and an enzyme linked immunosorbent assay showed that EA inhibited ergosterol biosynthesis and reduced the activity of sterol 14α-demethylase P450 (CYP51) in the Trichophyton rubrum membrane, respectively. An in vivo test demonstrated that topical administration of EA (4.0 and 8.0 mg/cm(2) ) significantly enhanced the cure rate in a guinea-pig infection model of Trichophyton rubrum. The results suggest that EA has the potential to be developed as a natural antifungal agent.


Subject(s)
Antifungal Agents/pharmacology , Ellagic Acid/pharmacology , Tinea/drug therapy , Administration, Cutaneous , Animals , Arthrodermataceae/drug effects , Candida/drug effects , Disease Models, Animal , Female , Fluconazole , Guinea Pigs , Male , Microbial Sensitivity Tests , Molecular Structure , Trichophyton/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...