Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 656472, 2021.
Article in English | MEDLINE | ID: mdl-34095097

ABSTRACT

Hydrogels with ion exchange properties were synthesized from compounds derived from wood biopolymer hemicellulose and from commercial vinyl monomers to be tested as active materials for the removal of Cu(II), Cr(VI), and As(V) ions. The hemicellulose O-acetyl galactoglucomannan (GGM) was used as the precursor material, and through a transesterification reaction, GGM was converted into a macromonomer GGM-glycidyl methacrylate (GGM-GMA). Subsequently, the GGM-GMA macromonomer, containing more than one methacrylate group, was used as a crosslinking agent in the synthesis of hydrogels through free-radical polymerization reactions in combination with a 2-acrylamido-2-methyl-1-propanesulfonic acid monomer to produce a cation exchange hydrogel. Also, (3-acrylamidopropyl)trimethylammonium chloride monomer was applied together with the GGM-GMA to form hydrogels that can be used as anion exchange hydrogel. The hydrogels were characterized by Fourier transform-infrared (FT-IR), 1H-NMR spectroscopy, and thermogravimetric analysis (TGA), as well as derivative thermogravimetry (DTG). The microstructure of the hydrogels was characterized by scanning electron microscopy (SEM) analysis with X-ray microanalysis energy-dispersive spectroscopy (EDS). The results obtained regarding the absorption capacity of the Cu(II), Cr(VI), and As(V) ions were studied as a function of the pH value and the initial concentration of the metal ions in the solutions. Absorption was carried out in consecutive batches, and it was found that the poly(GGM-GMA/AMPSH) hydrogel reached an absorption capacity of 90 mg g-1 for Cu(II). The poly(GGM-GMA/APTACl) hydrogel reached values of 69 and 60 mg g-1 for Cr(VI) and As(V) oxyanions, respectively. Tests with polymer blends (mixtures of anionic and cationic hydrogels) were also carried out to remove Cu(II), Cr(VI), and As(V) ions from multi-ionic solutions, obtaining satisfactory results.

2.
Carbohydr Polym ; 111: 797-805, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25037418

ABSTRACT

In this work the synthesis of hemicellulose-based hydrogels and their application for the removal of arsenic and chromium ions is described. In a first step O-acetyl galactoglucomannan (GGM) was subjected to a transesterification applying glycidyl methacrylate (GMA) for the synthesis of novel GGM macromonomers. Two distinguished and purified GGM fractions with molar mass of 7.1 and 28 kDa were used as starting materials. The resulting GGM macromonomers (GGM-MA) contained well-defined amounts of methacrylate groups as determined by (1)H NMR spectroscopy. Selected GGM-MA derivatives were consecutively applied as a crosslinker in the synthesis of tailored hydrogels using [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MeDMA) as monomer. The swelling rate of the hydrogels was determined and the coherence between the swelling rate and the hydrogel composition was examined. The morphology of the GGM-based hydrogels was analysed by SEM and the hydrogels revealed a high surface area and were assessed in respect to their ability to remove arsenate and chromate ions from aqueous solutions. The presented bio-based hydrogels are of high interest especially for the mining industries as a sustainable material for the treatment of their highly contaminated wastewaters.

3.
Carbohydr Polym ; 110: 163-72, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-24906743

ABSTRACT

Nanofibrillated cellulose (NFC) and hemicelluloses have shown to be highly promising renewable components both as barrier materials and in novel biocomposites. However, the hydrophilic nature of these materials restricts their use in some applications. In this work, the usability of modified O-acetyl galactoglucomannan (GGM) for modification of NFC surface properties was studied. Four GGM-block-structured, amphiphilic derivatives were synthesized using either fatty acids or polydimethylsiloxane as hydrophobic tails. The adsorption of these GGM derivatives was consecutively examined in aqueous solution using a quartz crystal microbalance with dissipation monitoring (QCM-D). It was found that the hydrophobic tails did not hinder adsorption of the GGM derivatives to cellulose, which was concluded to be due to the presence of the native GGM-block with high affinity to cellulose. The layer properties of the adsorbed block-co-polymers were discussed and evaluated. Self-standing NFC films were further prepared and coated with the GGM derivatives and the effect of the surface modification on wetting properties and oxygen permeability (OP) of the modified films was assessed.


Subject(s)
Cellulose/chemistry , Mannans/chemistry , Nanofibers/chemistry , Cellulose/metabolism , Hydrophobic and Hydrophilic Interactions , Mannans/metabolism
4.
Bioresour Technol ; 155: 446-50, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24495799

ABSTRACT

The xylan-rich hemicellulose components of sugarcane bagasse were sequentially extracted with pressurized hot-water extraction (PHWE) and alkaline peroxide. The hemicelluloses were found to contain mainly arabinoxylans with varying substitutions confirmed by different chemical and spectroscopic methods. The arabinoxylans obtained from PHWE were found to be more branched compared to those obtained after alkaline extraction. Sequential extraction could be useful for the isolation of hemicelluloses with different degree of branching, molar mass, and functional groups from sugarcane bagasse, which can be of high potential use for various industrial applications.


Subject(s)
Cellulose/analysis , Chemical Fractionation/methods , Saccharum/chemistry , Temperature , Xylans/isolation & purification , Arabinose/analysis , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , India , Lignin/analysis , Magnetic Resonance Spectroscopy , Peroxides , Polysaccharides/analysis , Polysaccharides/isolation & purification , Pressure , Spectroscopy, Fourier Transform Infrared , Water , Xylans/analysis
SELECTION OF CITATIONS
SEARCH DETAIL