Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Neurophysiol ; 132(10): 2681-2684, 2021 10.
Article in English | MEDLINE | ID: mdl-34274216

ABSTRACT

OBJECTIVE: This proof-of-principle-study evaluated the extent to which spontaneous activity (SA) of the muscle can be detected via non-invasive magnetomyography (MMG) with optically pumped magnetometers (OPM). METHODS: Five patients, who together exhibited all forms of SA (fibrillations, positive sharp waves, fasciculations, myotonic discharges, complex-repetitive discharges) with conventional needle electromyography (EMG), were studied by OPM-MMG and simultaneous surface EMG (sEMG) while at rest, during light muscle activation, and when a muscle stretch reflex was elicited. Three healthy subjects were measured as controls. SA was considered apparent in the OPM-MMG if a signal could be visually detected that corresponded in shape and frequency to the SA in the respective needle EMG. RESULTS: SA in the context of fasciculations could be detected in 2 of 5 patients by simultaneous OPM-MMG/sEMG. Other forms of SA could not be detected at rest, during light muscle activation, or after provocation of a muscle stretch reflex. CONCLUSIONS: Results show that fasciculations could be detected non-invasively via a new method (OPM). SIGNIFICANCE: We show that other forms of SA are not detectable with current OPM and propose necessary technical solutions to overcome this circumstance. Our results motivate to pursue OPM-MMG as a new clinical neurophysiological diagnostic.


Subject(s)
Electromyography/methods , Fasciculation/diagnosis , Fasciculation/physiopathology , Magnetoencephalography/methods , Magnetometry/methods , Adult , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Neuromuscular Diseases/diagnosis , Neuromuscular Diseases/physiopathology , Proof of Concept Study
2.
Front Physiol ; 12: 724755, 2021.
Article in English | MEDLINE | ID: mdl-34975515

ABSTRACT

So far, surface electromyography (sEMG) has been the method of choice to detect and evaluate muscle fatigue. However, recent advancements in non-cryogenic quantum sensors, such as optically pumped magnetometers (OPMs), enable interesting possibilities to flexibly record biomagnetic signals. Yet, a magnetomyographic investigation of muscular fatigue is still missing. Here, we simultaneously used sEMG (4 surface electrode) and OPM-based magnetomyography (OPM-MMG, 4 sensors) to detect muscle fatigue during a 3 × 1-min isometric contractions of the left rectus femoris muscle in 7 healthy participants. Both signals exhibited the characteristic spectral compression distinctive for muscle fatigue. OPM-MMG and sEMG slope values, used to quantify the spectral compression of the signals, were positively correlated, displaying similarity between the techniques. Additionally, the analysis of the different components of the magnetic field vector enabled speculations regarding the propagation of the muscle action potentials (MAPs). Altogether these results show the feasibility of the magnetomyographic approach with OPMs and propose a potential alternative to sEMG for the study of muscle fatigue.

SELECTION OF CITATIONS
SEARCH DETAIL