Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Proc Natl Acad Sci U S A ; 116(1): 67-72, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30584111

ABSTRACT

The extent to which climate change causes significant societal disruption remains controversial. An important example is the decline of the Akkadian Empire in northern Mesopotamia ∼4.2 ka, for which the existence of a coincident climate event is still uncertain. Here we present an Iranian stalagmite record spanning 5.2 ka to 3.7 ka, dated with 25 U/Th ages that provide an average age uncertainty of 31 y (1σ). We find two periods of increased Mg/Ca, beginning abruptly at 4.51 and 4.26 ka, and lasting 110 and 290 y, respectively. Each of these periods coincides with slower vertical stalagmite growth and a gradual increase in stable oxygen isotope ratios. The periods of high Mg/Ca are explained by periods of increased dust flux sourced from the Mesopotamia region, and the abrupt onset of this dustiness indicates threshold behavior in response to aridity. This interpretation is consistent with existing marine and terrestrial records from the broad region, which also suggest that the later, longer event beginning at 4.26 ka is of greater regional extent and/or amplitude. The chronological precision and high resolution of our record indicates that there is no significant difference, at decadal level, between the start date of the second, larger dust event and the timing of North Mesopotamia settlement abandonment, and furthermore reveals striking similarity between the total duration of the second dust event and settlement abandonment. The Iranian record demonstrates this region's threshold behavior in dust production, and its ability to maintain this climate state for multiple centuries naturally.


Subject(s)
Climate Change/history , Social Change/history , Calcium/analysis , Dust/analysis , History, Ancient , Humans , Magnesium/analysis , Meteorology/methods , Middle East , Oxygen Isotopes/analysis
3.
Proc Natl Acad Sci U S A ; 111(18): 6606-11, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24715724

ABSTRACT

An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway, whereas up to 14% arises from slower side reactions proceeding via superoxide and hydrogen peroxide. The direct pathway is assigned to O2 reduction at the [NiFe] active site, whereas the side reactions are an unavoidable consequence of the presence of low-potential relay centers that release electrons derived from H2 oxidation. The oxidase activity is too slow to be useful in removing O2 from the bacterial periplasm; instead, the four-electron reduction of molecular oxygen to harmless water ensures that the active site survives to catalyze sustained hydrogen oxidation.


Subject(s)
Escherichia coli Proteins/metabolism , Hydrogenase/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism , Catalytic Domain , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Hydrogen Peroxide/metabolism , Hydrogenase/chemistry , Mass Spectrometry , Models, Molecular , Nickel/chemistry , Oxidoreductases/chemistry , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...