Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Res Notes ; 13(1): 140, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32156312

ABSTRACT

OBJECTIVE: Reprocessing reusable medical devices is crucial in the healthcare industry. To ensure patient safety, strict standards are dictated to validate thermal disinfection in automated washer-disinfectors. The United States Food and Drug Administration (FDA) has specific recommendations on the vegetative bacterial challenge but comparatively vague guidance on the use of a thermophilic Mycobacterium strain for thermal disinfection studies. This study aims to compare thermal resistance of Mycobacterium hassiacum and Mycobacterium terrae and determine which strain is suitable for medical device thermal disinfection validation testing in automated washer-disinfectors. RESULTS: Thermal resistance was demonstrated in vitro by calculating D-values for each strain at different exposure temperatures, and correlated with actual in situ processing conditions. M. terrae was completely killed (> 7 log reduction) at temperatures above 68 °C, with D-values between 46.6 and 27.8 s at temperatures between 59.5 and 67.2 °C. M. hassiacum was completely killed (> 8 log reduction) at temperatures above 75 °C, with D-values between 82.1 and 21.7 s at temperatures ranging between 69.2 and 73.6 °C. In vitro results were correlated in a washer-disinfector performance validation setup.


Subject(s)
Disinfection , Equipment and Supplies/microbiology , Mycobacterium/isolation & purification , Temperature , Microbial Viability , Water
2.
Clin Podiatr Med Surg ; 37(1): 151-169, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31735265

ABSTRACT

Biomechanical changes to the lower extremity in patients with diabetes mellitus are typically greatest with peripheral neuropathy, although peripheral arterial disease also impacts limb function. Changes to anatomic structures can impact daily function. These static changes, coupled with kinetic and kinematic changes of gait, lead to increased vertical and shear ground reactive forces, resulting in ulcerations. Unsteadiness secondary to diminished postural stability and increased sway increase fall risk. These clinical challenges and exacerbation of foot position and dynamic changes associated with limb salvage procedures, amputations, and prostheses are necessary and can impact daily function, independence, quality of life, and mortality.


Subject(s)
Diabetic Foot/physiopathology , Diabetic Foot/therapy , Amputation, Surgical , Artificial Limbs , Biomechanical Phenomena , Diabetic Foot/etiology , Gait , Humans , Limb Salvage
SELECTION OF CITATIONS
SEARCH DETAIL
...