Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Psychol ; 17(1): 85-103, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33737976

ABSTRACT

The specific questions addressed from this research include: (1) Does high-intensity acute exercise improve memory?, (2) If so, do the mechanisms occur via encoding, consolidation, or retrieval? and (3) If acute exercise occurs in multiple phases of memory (e.g., before encoding and during consolidation), does this have an additive effect on memory? Three experimental, within-subject, counterbalanced studies were conducted among young adults. High-intensity exercise involved a 20-minutes bout of exercise at 75% of heart rate reserve. Memory was evaluated from a word-list task, including multiple evaluations out to 24-hours post-encoding. The timing of the exercise and memory assessments were carefully positioned to evaluate whether any improvements in memory were driven by mechanisms related to encoding, consolidation, and/or retrieval. We demonstrated that high-intensity acute exercise enhanced memory. This effect was robust (repeatable) and occurred through encoding, consolidation and retrieval-based mechanisms. Further, incorporating acute exercise into multiple phases of memory additively enhanced memory function.

2.
Medicina (Kaunas) ; 55(8)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394736

ABSTRACT

Background and Objective: The transient hypofrontality hypothesis predicts that memory function will be impaired during high-intensity exercise, as a result of a need for metabolic and cognitive resources to be allocated toward sustaining movement, as opposed to performing a cognitive task. The purpose of these experiments was to evaluate this transient hypofrontality hypothesis. Materials and Methods: Experiment 1 involved participants (n = 24; Mage = 21.9 years) completing four counterbalanced visits. Two visits evaluated working memory function, either at rest or during a high-intensity bout of acute exercise. The other two visits evaluated episodic memory function, either at rest or during a high-intensity bout of acute exercise. Experiment 2 (n = 24; Mage = 20.9 years) extended Experiment 1 by evaluating memory function (working memory) across 4 counterbalanced conditions, including at rest and during light (30% of heart rate reserve; HRR), moderate (50% HRR) and high-intensity (80% HRR) acute exercise. Results: Experiment 1 demonstrated that, when compared to rest, both working memory and episodic memory were impaired during high-intensity acute exercise. Experiment 2 replicated this effect, but then also showed that, unlike high-intensity acute exercise, memory function was not impaired during low- and moderate-intensity acute exercise. Conclusions: Our experiments provide support for the transient hypofrontality hypothesis. Both working memory and episodic memory are impaired during high-intensity acute exercise. Working memory does not appear to be impaired during lower exercise intensities.


Subject(s)
Cognitive Dysfunction/etiology , Exercise Therapy/adverse effects , Exercise/physiology , Memory/physiology , Adolescent , Adult , Cognitive Dysfunction/psychology , Exercise Therapy/methods , Exercise Therapy/psychology , Female , Humans , Male , Memory, Short-Term/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...