Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Photonics ; 9(8): 2676-2682, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35996375

ABSTRACT

Crystals and fibers doped with rare-earth (RE) ions provide the basis for most of today's solid-state optical systems, from lasers and telecom devices to emerging potential quantum applications such as quantum memories and optical to microwave conversion. The two platforms, doped crystals and doped fibers, seem mutually exclusive, each having its own strengths and limitations, the former providing high homogeneity and coherence and the latter offering the advantages of robust optical waveguides. Here we present a hybrid platform that does not rely on doping but rather on coating the waveguide-a tapered silica optical fiber-with a monolayer of complexes, each containing a single RE ion. The complexes offer an identical, tailored environment to each ion, thus minimizing inhomogeneity and allowing tuning of their properties to the desired application. Specifically, we use highly luminescent Yb3+[Zn(II)MC (QXA)] complexes, which isolate the RE ion from the environment and suppress nonradiative decay channels. We demonstrate that the beneficial optical transitions of the Yb3+ are retained after deposition on the tapered fiber and observe an excited-state lifetime of over 0.9 ms, on par with state-of-the-art Yb-doped inorganic crystals.

2.
Opt Express ; 28(21): 31297-31315, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115106

ABSTRACT

Whispering-gallery-mode (WGM) microresonators are a promising platform for highly sensitive, label-free detection and probing of individual nano-objects. Our work expands these capabilities by providing the analysis tools required for three-dimensional (3D) characterization of arbitrarily shaped nanoparticles. Specifically, we introduce a theoretical model that describes interactions between nanoparticles and WGM resonators, taking into account effects that were often not considered, such as the elliptical polarization of the transverse-magnetic (TM) mode, the possible non-spherical shape of the nanoparticle, its finite size, and the open-system nature of the modes. We also introduce a self referencing measurement method that allows the extraction of information from measurements done at arbitrary positions of the nanoparticles within the WGM. We verify our model by experimentally probing a single Tungsten-disulfide (WS2) nanotube with a silica microtoroid resonator inside a scanning electron-microscope (SEM) and perform 3D characterization of the nanotube.

3.
Opt Express ; 28(8): 11822-11839, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403685

ABSTRACT

We present a scheme for deterministic ion-photon qubit exchange, namely a SWAP gate, based on realistic cavity-QED systems with 171Yb+, 40Ca+ and 138Ba+ ions. The gate can also serve as a single-photon quantum memory, in which an outgoing photon heralds the successful arrival of the incoming photonic qubit. Although strong coupling, namely having the single-photon Rabi frequency be the fastest rate in the system, is often assumed essential, this gate (similarly to the Duan-Kimble C-phase gate) requires only Purcell enhancement, i.e. high single-atom cooperativity. Accordingly, it does not require small mode volume cavities, which are challenging to incorporate with ions due to the difficulty of trapping them close to dielectric surfaces. Instead, larger cavities, potentially more compatible with the trap apparatus, are sufficient, as long as their numerical aperture is high enough to maintain small mode area at the ion's position. We define the optimal parameters for the gate's operation and simulate the expected fidelities and efficiencies, demonstrating that efficient photon-ion qubit exchange, a valuable building block for scalable quantum computation, is practically attainable with current experimental capabilities.

4.
Nat Commun ; 6: 6788, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25873232

ABSTRACT

Spectroscopy of whispering-gallery mode microresonators has become a powerful scientific tool, enabling the detection of single viruses, nanoparticles and even single molecules. Yet the demonstrated timescale of these schemes has been limited so far to milliseconds or more. Here we introduce a scheme that is orders of magnitude faster, capable of capturing complete spectral snapshots at nanosecond timescales-cavity ring-up spectroscopy. Based on sharply rising detuned probe pulses, cavity ring-up spectroscopy combines the sensitivity of heterodyne measurements with the highest-possible, transform-limited acquisition rate. As a demonstration, we capture spectra of microtoroid resonators at time intervals as short as 16 ns, directly monitoring submicrosecond dynamics of their optomechanical vibrations, thermorefractive response and Kerr nonlinearity. Cavity ring-up spectroscopy holds promise for the study of fast biological processes such as enzyme kinetics, protein folding and light harvesting, with applications in other fields such as cavity quantum electrodynamics and pulsed optomechanics.

5.
Science ; 345(6199): 903-6, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25146283

ABSTRACT

The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing.

6.
Phys Rev Lett ; 112(12): 120403, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724631

ABSTRACT

We experimentally demonstrate first-order (fold) and second-order (cusp) catastrophes in the density of an atomic cloud reflected from an optical barrier in the presence of gravity and show their corresponding universal asymptotic behavior. These catastrophes, arising from classical dynamics, enable robust, field-free refocusing of an expanding atomic cloud with a wide velocity distribution. Specifically, the density attained at the cusp point in our experiment reached 65% of the peak density of the atoms in the trap prior to their release. We thereby add caustics to the various phenomena with parallels in optics that can be harnessed for manipulation of cold atoms. The structural stability of catastrophes provides inherent robustness against variations in the system's dynamics and initial conditions, making them suitable for manipulation of atoms under imperfect conditions and limited controllability.

7.
Opt Lett ; 38(16): 2949-52, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-24104618

ABSTRACT

In a recent Letter, Brunner and Simon proposed an interferometric scheme using imaginary weak values with a frequency-domain analysis to outperform standard interferometry in longitudinal phase shifts [Phys. Rev. Lett105, 010405 (2010)]. Here we demonstrate an interferometric scheme combined with a time-domain analysis to measure longitudinal velocities. The technique employs the near-destructive interference of non-Fourier limited pulses, one Doppler shifted due to a moving mirror in a Michelson interferometer. We achieve a velocity measurement of 400 fm/s and show our estimator to be efficient by reaching its Cramér-Rao bound.

8.
Phys Rev Lett ; 111(2): 023604, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889401

ABSTRACT

We demonstrate a new type of weak measurement based on the dynamics of spontaneous emission. The pointer in our scheme is given by the Lorentzian distribution characterizing atomic exponential decay via emission of a single photon. We thus introduce weak measurement, so far demonstrated nearly exclusively with laser beams and Gaussian statistics, into the quantum regime of single emitters and single quanta, enabling the exploitation of a wide class of sources that are abundant in nature. We describe a complete analogy between our scheme and weak measurement with conventional Gaussian pointers. Instead of a shift in the mean of a Gaussian distribution, an imaginary weak value is exhibited in our scheme by a significantly slower-than-natural exponential distribution of emitted photons at the postselected polarization, leading to a large shift in their mean arrival time. The dynamics of spontaneous emission offer a broader view of the measurement process than is usually considered within the weak measurement formalism. Our scheme opens the path for the use of atoms and atomlike systems as sensitive probes in weak measurements, one example being optical magnetometry.

9.
Phys Rev Lett ; 102(8): 083601, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19257737

ABSTRACT

Single photons from a coherent input are efficiently redirected to a separate output by way of a fiber-coupled microtoroidal cavity interacting with individual cesium atoms. By operating in an overcoupled regime for the input-output to a tapered fiber, our system functions as a quantum router with high efficiency for photon sorting. Single photons are reflected and excess photons transmitted, as confirmed by observations of photon antibunching (bunching) for the reflected (transmitted) light. Our photon router is robust against large variations of atomic position and input power, with the observed photon antibunching persisting for intracavity photon number 0.03 < or approximately similar n < or approximately similar 0.7.

10.
Science ; 319(5866): 1062-5, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18292335

ABSTRACT

Beyond traditional nonlinear optics with large numbers of atoms and photons, qualitatively new phenomena arise in a quantum regime of strong interactions between single atoms and photons. By using a microscopic optical resonator, we achieved such interactions and demonstrated a robust, efficient mechanism for the regulated transport of photons one by one. With critical coupling of the input light, a single atom within the resonator dynamically controls the cavity output conditioned on the photon number at the input, thereby functioning as a photon turnstile. We verified the transformation from a Poissonian to a sub-Poissonian photon stream by photon counting measurements of the input and output fields. The results have applications in quantum information science, including for controlled interactions of single light quanta and for scalable quantum processing on atom chips.

11.
Opt Express ; 15(14): 8760-9, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-19547211

ABSTRACT

We describe a novel non-linear detection method for optical tomography that does not rely on detection of interference fringes and is free of optical background. The method exploits temporally coherent broadband illumination such as ultrashort pulses, and a non-linear two-photon detection process such as sum-frequency generation (SFG). At the detection stage, the reference beam and the sample beam are mixed in a thick non-linear crystal, and only the mixing term, which is free of optical background, is detected. Consequently, the noise limitations posed by the background in standard OCT (excess and shot noise), do not exist here. Due to the non-linearity, the signal to noise ratio scales more favorably with the optical power compared to standard OCT, yielding an inherent improvement for high speed tomographic scans. Careful design of phase matching in the crystal enables non-linear mixing which is both highly efficient and broadband, yielding both high sensitivity and high depth resolution.

12.
Nature ; 443(7112): 671-4, 2006 Oct 12.
Article in English | MEDLINE | ID: mdl-17035998

ABSTRACT

Over the past decade, strong interactions of light and matter at the single-photon level have enabled a wide set of scientific advances in quantum optics and quantum information science. This work has been performed principally within the setting of cavity quantum electrodynamics with diverse physical systems, including single atoms in Fabry-Perot resonators, quantum dots coupled to micropillars and photonic bandgap cavities and Cooper pairs interacting with superconducting resonators. Experiments with single, localized atoms have been at the forefront of these advances with the use of optical resonators in high-finesse Fabry-Perot configurations. As a result of the extreme technical challenges involved in further improving the multilayer dielectric mirror coatings of these resonators and in scaling to large numbers of devices, there has been increased interest in the development of alternative microcavity systems. Here we show strong coupling between individual caesium atoms and the fields of a high-quality toroidal microresonator. From observations of transit events for single atoms falling through the resonator's evanescent field, we determine the coherent coupling rate for interactions near the surface of the resonator. We develop a theoretical model to quantify our observations, demonstrating that strong coupling is achieved, with the rate of coherent coupling exceeding the dissipative rates of the atom and the cavity. Our work opens the way for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators. Applications include the implementation of quantum networks, scalable quantum logic with photons, and quantum information processing on atom chips.

13.
Phys Rev Lett ; 94(4): 043602, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15783557

ABSTRACT

We experimentally demonstrate sum-frequency generation with entangled photon pairs, generating as many as 40,000 photons per second, visible even to the naked eye. The nonclassical nature of the interaction is exhibited by a linear intensity dependence of the nonlinear process. The key element in our scheme is the generation of an ultrahigh flux of entangled photons while maintaining their nonclassical properties. This is made possible by generating the down-converted photons as broadband as possible, orders of magnitude wider than the pump. This approach can be applied to other nonlinear interactions, and may become useful for various quantum-measurement tasks.

14.
Phys Rev Lett ; 94(7): 073601, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15783815

ABSTRACT

We experimentally demonstrate shaping of the two-photon wave function of entangled-photon pairs, utilizing coherent pulse-shaping techniques. By performing spectral-phase manipulations we tailor the second-order correlation function of the photons exactly like a coherent ultrashort pulse. To observe the shaping we perform sum-frequency generation with an ultrahigh flux of entangled photons. At the appropriate conditions, sum-frequency generation performs as a coincidence detector with an ultrashort response time (approximately 100 fs), enabling a direct observation of the two-photon wave function. This property also enables us to demonstrate background-free, high-visibility two-photon interference oscillations.

15.
Phys Rev Lett ; 93(2): 023005, 2004 Jul 09.
Article in English | MEDLINE | ID: mdl-15323912

ABSTRACT

We experimentally demonstrate two-photon absorption with broadband down-converted light (squeezed vacuum). Although incoherent and exhibiting the statistics of a thermal noise, broadband down-converted light can induce two-photon absorption with the same sharp temporal behavior as femtosecond pulses, while exhibiting the high spectral resolution of the narrow band pump laser. Using pulse-shaping methods, we coherently control two-photon absorption in rubidium, demonstrating spectral and temporal resolutions that are 3-5 orders of magnitude below the actual bandwidth and temporal duration of the light itself. Such properties can be exploited in various applications such as spread-spectrum optical communications, tomography, and nonlinear microscopy.

16.
Opt Express ; 12(26): 6600-5, 2004 Dec 27.
Article in English | MEDLINE | ID: mdl-19488311

ABSTRACT

The smallest spot in optical lithography and microscopy is generally limited by diffraction. Quantum lithography, which utilizes interference between groups of N entangled photons, was recently proposed to beat the diffraction limit by a factor N. Here we propose a simple method to obtain N photons interference with classical pulses that excite a narrow multiphoton transition, thus shifting the "quantum weight" from the electromagnetic field to the lithographic material. We show how a practical complete lithographic scheme can be developed and demonstrate the underlying principles experimentally by two-photon interference in atomic Rubidium, to obtain focal spots that beat the diffraction limit by a factor of 2.

SELECTION OF CITATIONS
SEARCH DETAIL
...