Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 306: 119377, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35490997

ABSTRACT

Graphene oxide can be used to store energy, as electrodes and purify industrial and domestic wastewater as photocatalysts and adsorbents because of its remarkable thermal, electrical, and chemical capabilities. Toward understanding graphene oxide (GO) based nanomaterials considering the background factors, the present review study investigated their characteristics, preparation methods, and characterization processes. The removal of contaminants from wastewater has recently been a focus of attention for materials based on GO. Progress in GO synthesis and surface modification has shown that they can be used to immobilize enzymes. It is possible to immobilize enzymes with varying characteristics on graphene-oxide-based substrates without sacrificing their functioning, thus developing a new environmental remediation platform utilizing nano biocatalysts. GO doping and co-doping with a variety of heterogeneous semiconductor-based metal oxides were included in a brief strategy for boosting GO efficiency. A high band-gap material was also explored as a possibility for immobilization, which shifts the absorption threshold to the visible range and increases photoactivity. For water treatment applications, graphene-based nanomaterials were used in Fenton reactions, photocatalysis, ozonation, photo electrocatalysis, photo-Fenton, and a combination of photon-Fenton and photocatalysis. Nanoparticles made from GO improved the efficiency of composite materials when used for their intended applications. As a result of the analysis, prospects and improvements are clear, especially when it comes to scaling up GO-based wastewater treatment technologies.


Subject(s)
Environmental Pollutants , Graphite , Nanostructures , Water Pollutants, Chemical , Graphite/chemistry , Nanostructures/chemistry , Wastewater , Water Pollutants, Chemical/chemistry
2.
Bioresour Technol ; 207: 150-6, 2016 May.
Article in English | MEDLINE | ID: mdl-26878360

ABSTRACT

Statistical optimization designs were used to optimize the phenol degradation using Chlorella pyrenoidosa. The important factor influencing phenol degradation was identified by two-level Plackett-Burman Design (PBD) with five factors. PBD determined the following three factors as significant for phenol degradation viz. algal concentration, phenol concentration and reaction time. CCD and RSM were applied to optimize the significant factors identified from PBD. The results obtained from CCD indicated that the interaction between the concentration of algae and phenol, phenol concentration and reaction time and algal concentration and reaction time affect the phenol degradation (response) significantly. The predicted results showed that maximum phenol degradation of 97% could be achieved with algal concentration of 4g/L, phenol concentration of 0.8g/L and reaction time of 4days. The predicted values were in agreement with experimental values with coefficient of determination (R(2)) of 0.9973. The model was validated by subsequent experimentations at the optimized conditions.


Subject(s)
Chlorella/metabolism , Microalgae/metabolism , Phenols/metabolism , Analysis of Variance , Biodegradation, Environmental , India , Industrial Waste , Models, Theoretical , Polytetrafluoroethylene/chemistry , RNA, Ribosomal, 18S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...