Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Endocrinol ; 26(7): 1203-12, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22570331

ABSTRACT

Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic ß-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal ß-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal ß-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal ß-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and ß-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2/genetics , Homeodomain Proteins/genetics , Insulin-Secreting Cells/metabolism , Trans-Activators/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose/pharmacology , Homeodomain Proteins/biosynthesis , Humans , Hyperglycemia/metabolism , Insulin/biosynthesis , Male , Middle Aged , Pancreas/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Trans-Activators/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...