Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Transl Psychiatry ; 14(1): 109, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395906

ABSTRACT

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.


Subject(s)
Bipolar Disorder , Lithium , Humans , Lithium/pharmacology , Lithium/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Genome-Wide Association Study , Multiomics , Focal Adhesions
2.
Res Sq ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37886563

ABSTRACT

Lithium is the gold standard treatment for bipolar disorder (BD). However, its mechanism of action is incompletely understood, and prediction of treatment outcomes is limited. In our previous multi-omics study of the Pharmacogenomics of Bipolar Disorder (PGBD) sample combining transcriptomic and genomic data, we found that focal adhesion, the extracellular matrix (ECM), and PI3K-Akt signaling networks were associated with response to lithium. In this study, we replicated the results of our previous study using network propagation methods in a genome-wide association study of an independent sample of 2,039 patients from the International Consortium on Lithium Genetics (ConLiGen) study. We identified functional enrichment in focal adhesion and PI3K-Akt pathways, but we did not find an association with the ECM pathway. Our results suggest that deficits in the neuronal growth cone and PI3K-Akt signaling, but not in ECM proteins, may influence response to lithium in BD.

3.
Development ; 150(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37401408

ABSTRACT

GABAergic interneurons are key regulators of cortical circuit function. Among the dozens of reported transcriptionally distinct subtypes of cortical interneurons, neurogliaform cells (NGCs) are unique: they are recruited by long-range excitatory inputs, are a source of slow cortical inhibition and are able to modulate the activity of large neuronal populations. Despite their functional relevance, the developmental emergence and diversity of NGCs remains unclear. Here, by combining single-cell transcriptomics, genetic fate mapping, and electrophysiological and morphological characterization, we reveal that discrete molecular subtypes of NGCs, with distinctive anatomical and molecular profiles, populate the mouse neocortex. Furthermore, we show that NGC subtypes emerge gradually through development, as incipient discriminant molecular signatures are apparent in preoptic area (POA)-born NGC precursors. By identifying NGC developmentally conserved transcriptional programs, we report that the transcription factor Tox2 constitutes an identity hallmark across NGC subtypes. Using CRISPR-Cas9-mediated genetic loss of function, we show that Tox2 is essential for NGC development: POA-born cells lacking Tox2 fail to differentiate into NGCs. Together, these results reveal that NGCs are born from a spatially restricted pool of Tox2+ POA precursors, after which intra-type diverging molecular programs are gradually acquired post-mitotically and result in functionally and molecularly discrete NGC cortical subtypes.


Subject(s)
Neocortex , Neurons , Mice , Animals , Transcription Factors/genetics , Interneurons/physiology , Cell Movement
4.
Front Neural Circuits ; 17: 1138358, 2023.
Article in English | MEDLINE | ID: mdl-37334059

ABSTRACT

The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.


Subject(s)
Conditioning, Classical , Fear , Gyrus Cinguli , Interneurons , Animals , Mice , Fear/physiology , Gyrus Cinguli/cytology , Gyrus Cinguli/physiology , Interneurons/physiology , Memory/physiology , Conditioning, Classical/physiology , Male , Calcium Signaling , Receptors, Serotonin/metabolism , Neuroglia/physiology
6.
Biol Psychol ; 171: 108351, 2022 05.
Article in English | MEDLINE | ID: mdl-35568095

ABSTRACT

ADHD has been associated with social cognitive impairments across the lifespan, but no studies have specifically addressed the presence of abnormalities in eye-gaze processing in the adult brain. This study investigated the neural basis of eye-gaze perception in adults with ADHD using event-related potentials (ERP). Twenty-three ADHD and 23 controls performed a delayed face-matching task with neutral faces that had either direct or averted gaze. ERPs were classified using microstate analyses. ADHD and controls displayed similar P100 and N170 microstates. ADHD was associated with cluster abnormalities in the attention-sensitive P200 to direct gaze, and in the N250 related to facial recognition. For direct gaze, source localization revealed reduced activity in ADHD for the P200 in the left/midline cerebellum, as well as in a cingulate-occipital network at the N250. These results suggest brain impairments involving eye-gaze decoding in adults with ADHD, suggestive of neural signatures associated with this disorder in adulthood.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Facial Recognition , Adult , Electroencephalography/methods , Evoked Potentials , Facial Expression , Fixation, Ocular , Humans , Visual Perception
8.
Br J Psychiatry ; : 1-10, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35225756

ABSTRACT

BACKGROUND: Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment. AIMS: To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder. METHOD: This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework. RESULTS: The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data. CONCLUSIONS: Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.

9.
Cell Rep ; 38(7): 110381, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35172154

ABSTRACT

Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion.


Subject(s)
Cell Differentiation/genetics , MicroRNAs/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , RNA, Untranslated/metabolism , Animals , Cell Proliferation/genetics , Cellular Reprogramming/genetics , Ferrets , HEK293 Cells , Humans , Lateral Ventricles , Mice , MicroRNAs/genetics , Mitosis/genetics , Neurogenesis/genetics , Neurons/metabolism , RNA, Untranslated/genetics
10.
Int J Dev Neurosci ; 82(3): 277-285, 2022 May.
Article in English | MEDLINE | ID: mdl-35212007

ABSTRACT

Alterations in the generation, migration and integration of different subtypes of neurons in the medial prefrontal cortex (mPFC) microcircuit could play an important role in vulnerability to schizophrenia. Using in vivo cell-type specific manipulation of pyramidal neurons (PNs) progenitors, we aim to investigate the role of the schizophrenia risk-gene DiGeorge Critical Region 2 (Dgcr2) on cortical circuit formation in the mPFC of developing mice. This report describes how Dgcr2 knock down in upper-layer PNs impacts the functional maturation of PNs and interneurons (INs) in the mPFC. First, we demonstrate that Dgcr2 knock-down disrupts laminar positioning, dendritic morphology and excitatory activity of upper-layer PNs. Interestingly, inhibitory activity is also modified in Dgcr2 knock-down PNs, suggesting a broader microcircuit alteration involving interneurons. Further analyses show that the histological maturation of parvalbumin (PV) INs is not dramatically impaired, thus implying that other INs subtypes might be at play in the reported microcircuit alteration. Overall, this study unravels how local functional deficits of the early postnatal development of the mPFC can be induced by Dgcr2 knock-down in PNs.


Subject(s)
Platelet Glycoprotein GPIb-IX Complex/metabolism , Schizophrenia , Animals , Down-Regulation , Interneurons/metabolism , Mice , Parvalbumins/genetics , Parvalbumins/metabolism , Prefrontal Cortex , Schizophrenia/genetics
11.
Nature ; 599(7885): 453-457, 2021 11.
Article in English | MEDLINE | ID: mdl-34754107

ABSTRACT

Interconnectivity between neocortical areas is critical for sensory integration and sensorimotor transformations1-6. These functions are mediated by heterogeneous inter-areal cortical projection neurons (ICPN), which send axon branches across cortical areas as well as to subcortical targets7-9. Although ICPN are anatomically diverse10-14, they are molecularly homogeneous15, and how the diversity of their anatomical and functional features emerge during development remains largely unknown. Here we address this question by linking the connectome and transcriptome in developing single ICPN of the mouse neocortex using a combination of multiplexed analysis of projections by sequencing16,17 (MAPseq, to identify single-neuron axonal projections) and single-cell RNA sequencing (to identify corresponding gene expression). Focusing on neurons of the primary somatosensory cortex (S1), we reveal a protracted unfolding of the molecular and functional differentiation of motor cortex-projecting ([Formula: see text]) ICPN compared with secondary somatosensory cortex-projecting ([Formula: see text]) ICPN. We identify SOX11 as a temporally differentially expressed transcription factor in [Formula: see text] versus [Formula: see text] ICPN. Postnatal manipulation of SOX11 expression in S1 impaired sensorimotor connectivity and disrupted selective exploratory behaviours in mice. Together, our results reveal that within a single cortical area, different subtypes of ICPN have distinct postnatal paces of molecular differentiation, which are subsequently reflected in distinct circuit connectivities and functions. Dynamic differences in the expression levels of a largely generic set of genes, rather than fundamental differences in the identity of developmental genetic programs, may thus account for the emergence of intra-type diversity in cortical neurons.


Subject(s)
Cell Differentiation , Neural Pathways , Neurons/cytology , Neurons/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Animals , Axons/physiology , Connectome , Female , Male , Mice , Mice, Inbred C57BL , Motor Cortex/cytology , Motor Cortex/physiology , Neocortex/cytology , Neocortex/physiology , SOXC Transcription Factors/genetics , Time Factors , Transcriptome
12.
Transl Psychiatry ; 11(1): 606, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845190

ABSTRACT

Lithium is the gold standard therapy for Bipolar Disorder (BD) but its effectiveness differs widely between individuals. The molecular mechanisms underlying treatment response heterogeneity are not well understood, and personalized treatment in BD remains elusive. Genetic analyses of the lithium treatment response phenotype may generate novel molecular insights into lithium's therapeutic mechanisms and lead to testable hypotheses to improve BD management and outcomes. We used fixed effect meta-analysis techniques to develop meta-analytic polygenic risk scores (MET-PRS) from combinations of highly correlated psychiatric traits, namely schizophrenia (SCZ), major depression (MD) and bipolar disorder (BD). We compared the effects of cross-disorder MET-PRS and single genetic trait PRS on lithium response. For the PRS analyses, we included clinical data on lithium treatment response and genetic information for n = 2283 BD cases from the International Consortium on Lithium Genetics (ConLi+Gen; www.ConLiGen.org ). Higher SCZ and MD PRSs were associated with poorer lithium treatment response whereas BD-PRS had no association with treatment outcome. The combined MET2-PRS comprising of SCZ and MD variants (MET2-PRS) and a model using SCZ and MD-PRS sequentially improved response prediction, compared to single-disorder PRS or to a combined score using all three traits (MET3-PRS). Patients in the highest decile for MET2-PRS loading had 2.5 times higher odds of being classified as poor responders than patients with the lowest decile MET2-PRS scores. An exploratory functional pathway analysis of top MET2-PRS variants was conducted. Findings may inform the development of future testing strategies for personalized lithium prescribing in BD.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Schizophrenia , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Depression , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Genetic Predisposition to Disease , Humans , Lithium/therapeutic use , Multifactorial Inheritance , Risk Factors , Schizophrenia/drug therapy , Schizophrenia/genetics
13.
Sci Rep ; 11(1): 17823, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497278

ABSTRACT

Bipolar affective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratification are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identified genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region. To better understand the molecular mechanisms underlying this association, we have genetically imputed the classical alleles of the HLA region in the European patients of the ConLiGen cohort. We found our best signal for amino-acid variants belonging to the HLA-DRB1*11:01 classical allele, associated with a better response to Li (p < 1 × 10-3; FDR < 0.09 in the recessive model). Alanine or Leucine at position 74 of the HLA-DRB1 heavy chain was associated with a good response while Arginine or Glutamic acid with a poor response. As these variants have been implicated in common inflammatory/autoimmune processes, our findings strongly suggest that HLA-mediated low inflammatory background may contribute to the efficient response to Li in BD patients, while an inflammatory status overriding Li anti-inflammatory properties would favor a weak response.


Subject(s)
Bipolar Disorder/genetics , Genetic Predisposition to Disease , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Lithium/therapeutic use , Adult , Alleles , Bipolar Disorder/drug therapy , Female , Gene Frequency , Genetic Variation , Genotype , Haplotypes , Humans , Male , Middle Aged , Pharmacogenetics , Treatment Outcome
14.
Cell Rep ; 34(4): 108644, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33503438

ABSTRACT

In the mammalian cerebral cortex, the developmental events governing allocation of different classes of inhibitory interneurons (INs) to distinct cortical layers are poorly understood. Here we report that the guidance receptor PlexinA4 (PLXNA4) is upregulated in serotonin receptor 3a-expressing (HTR3A+) cortical INs (hINs) as they invade the cortical plate, and that it regulates their laminar allocation to superficial cortical layers. We find that the PLXNA4 ligand Semaphorin3A (SEMA3A) acts as a chemorepulsive factor on hINs migrating into the nascent cortex and demonstrate that SEMA3A specifically controls their laminar positioning through PLXNA4. We identify deep-layer INs as a major source of SEMA3A in the developing cortex and demonstrate that targeted genetic deletion of Sema3a in these INs specifically affects laminar allocation of hINs. These data show that, in the neocortex, deep-layer INs control laminar allocation of hINs into superficial layers.


Subject(s)
Cerebral Cortex/metabolism , Interneurons/metabolism , Neocortex/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Semaphorin-3A/metabolism , Animals , Mice
15.
Sci Rep ; 11(1): 1155, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441847

ABSTRACT

Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen's kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [- 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.


Subject(s)
Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Genomics/methods , Lithium/therapeutic use , Adolescent , Adult , Bipolar Disorder/diagnosis , Female , Humans , Lithium/adverse effects , Lithium/pharmacology , Machine Learning , Male , Models, Genetic , Polymorphism, Single Nucleotide/drug effects , Prognosis , Treatment Outcome , Young Adult
16.
Mol Psychiatry ; 26(6): 2457-2470, 2021 06.
Article in English | MEDLINE | ID: mdl-32203155

ABSTRACT

Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Depression , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Humans , Lithium/therapeutic use
17.
J Affect Disord ; 280(Pt A): 54-63, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33202338

ABSTRACT

BACKGROUND: Adaptive recovery from stress promotes healthy cognitive affective functioning, whereas maladaptive recovery is linked to poor psychological outcomes. Neural regions, like the anterior cingulate and hippocampus, play critical roles in psychosocial stress responding and serve as hubs in the corticolimbic neural system. To date, however, it is unknown how cognitive emotion regulation traits (cER), adaptive and maladaptive, influence corticolimbic stress recovery. Here, we examined acute psychosocial stress neural recovery, accounting for cER. METHODS: Functional neuroimaging data were collected while forty-seven healthy participants performed blocks of challenging, time-sensitive, mental calculations. Participants immediately received performance feedback (positive/negative/neutral) and their ranking, relative to fictitious peers. Participants rested for 90 seconds after each feedback, allowing for a neural stress recovery period. Collected before scanning, cER scores were correlated with neural activity during each recovery condition. RESULTS: Negative feedback recovery yielded increased activity within the dorsomedial prefrontal cortex and amygdala, but this effect was ultimately explained by maladaptive cER (M-cER), like rumination. Isolating positive after-effects (i.e. positive > negative recovery) yielded a significant positive correlation between M-cER and the anterior cingulate, anterior insula, hippocampus, and striatum. CONCLUSIONS: We provide first evidence of M-cER to predict altered neural recovery from positive stress within corticolimbic regions. Positive feedback may be potentially threatening to individuals with poor stress regulation. Identifying positive stress-induced activation patterns in corticolimbic neural networks linked to M-cER creates the possibility to identify these neural responses as risk factors for social-emotional dysregulation subsequent to rewarding social information, often witnessed in affective disorders, like depression.


Subject(s)
Emotional Regulation , Emotions , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/diagnostic imaging , Stress, Psychological
18.
Neuroimage Clin ; 25: 102145, 2020.
Article in English | MEDLINE | ID: mdl-31911342

ABSTRACT

Abnormal patterns of electrical oscillatory activity have been repeatedly described in adult ADHD. In particular, the alpha rhythm (8-12 Hz), known to be modulated during attention, has previously been considered as candidate biomarker for ADHD. In the present study, we asked adult ADHD patients to self-regulate their own alpha rhythm using neurofeedback (NFB), in order to examine the modulation of alpha oscillations on attentional performance and brain plasticity. Twenty-five adult ADHD patients and 22 healthy controls underwent a 64-channel EEG-recording at resting-state and during a Go/NoGo task, before and after a 30 min-NFB session designed to reduce (desynchronize) the power of the alpha rhythm. Alpha power was compared across conditions and groups, and the effects of NFB were statistically assessed by comparing behavioral and EEG measures pre-to-post NFB. Firstly, we found that relative alpha power was attenuated in our ADHD cohort compared to control subjects at baseline and across experimental conditions, suggesting a signature of cortical hyper-activation. Both groups demonstrated a significant and targeted reduction of alpha power during NFB. Interestingly, we observed a post-NFB increase in resting-state alpha (i.e. rebound) in the ADHD group, which restored alpha power towards levels of the normal population. Importantly, the degree of post-NFB alpha normalization during the Go/NoGo task correlated with individual improvements in motor inhibition (i.e. reduced commission errors) only in the ADHD group. Overall, our findings offer novel supporting evidence implicating alpha oscillations in inhibitory control, as well as their potential role in the homeostatic regulation of cortical excitatory/inhibitory balance.


Subject(s)
Alpha Rhythm/physiology , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention/physiology , Electroencephalography Phase Synchronization/physiology , Inhibition, Psychological , Neurofeedback/physiology , Psychomotor Performance/physiology , Adult , Female , Humans , Male , Middle Aged , Young Adult
19.
Ann Clin Transl Neurol ; 7(1): 121-125, 2020 01.
Article in English | MEDLINE | ID: mdl-31846234

ABSTRACT

The combination of congenital bilateral perisylvian syndrome (CBPS) with lower motor neuron dysfunction remains unusual and suggests a potential common genetic insult affecting basic neurodevelopmental processes. Here we identify a putatively pathogenic missense mutation in the MCF2 gene in a boy with CBPS. Using in utero electroporation to genetically manipulate cortical neurons during corticogenesis, we demonstrate that the mouse Mcf2 gene controls the embryonic migration of cortical projection neurons. Strikingly, we find that the CBPS-associated MCF2 mutation impairs cortical laminar positioning, supporting the hypothesis that alterations in the process of embryonic neuronal migration can lead to rare cases of CBPS.


Subject(s)
Abnormalities, Multiple/genetics , Cerebral Cortex/embryology , Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/genetics , Malformations of Cortical Development/genetics , Motor Neuron Disease/genetics , Proto-Oncogene Proteins/genetics , Adult , Animals , Cell Movement , Disease Models, Animal , Humans , Male , Mice , Mutation, Missense , Young Adult
20.
Front Psychiatry ; 10: 826, 2019.
Article in English | MEDLINE | ID: mdl-31803082

ABSTRACT

Background: Neuroimaging studies provided evidence for disrupted resting-state functional brain network activity in bipolar disorder (BD). Electroencephalographic (EEG) studies found altered temporal characteristics of functional EEG microstates during depressive episode within different affective disorders. Here we investigated whether euthymic patients with BD show deviant resting-state large-scale brain network dynamics as reflected by altered temporal characteristics of EEG microstates. Methods: We used high-density EEG to explore between-group differences in duration, coverage, and occurrence of the resting-state functional EEG microstates in 17 euthymic adults with BD in on-medication state and 17 age- and gender-matched healthy controls. Two types of anxiety, state and trait, were assessed separately with scores ranging from 20 to 80. Results: Microstate analysis revealed five microstates (A-E) in global clustering across all subjects. In patients compared to controls, we found increased occurrence and coverage of microstate A that did not significantly correlate with anxiety scores. Conclusion: Our results provide neurophysiological evidence for altered large-scale brain network dynamics in BD patients and suggest the increased presence of A microstate to be an electrophysiological trait characteristic of BD.

SELECTION OF CITATIONS
SEARCH DETAIL
...