Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Rec (Hoboken) ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618897

ABSTRACT

The atlas and axis are the first two vertebrae from the cervical series; these two vertebrae are responsible for neck flexion, extension, and rotation movements, while providing insertion points for muscles and tendons. Amphisbaenia is a group of fossorial squamates known for having four distinctive head shapes, which are related to different excavation methods. However, little is known about the relationship between these different digging patterns and the anatomy and evolution of the atlantoaxial complex. In this study, we used computed microtomography data to describe in detail of the atlantoaxial complex for 15 species, belonging to all six current families of Amphisbaenia. Furthermore, we evaluate evolutionary scenarios of selected characters related to the atlantoaxial complex in the most recent phylogeny for Amphisbaenia, using the criteria of parsimony and maximum likelihood. Our results indicate that the evolutionary pattern of the atlantoaxial complex presents a diversification in its morphology that is not always correlated with the shape of the head. This analysis reinforces the hypothesis of remarkable morphological convergences in the evolutionary history of Amphisbaenia. Additionally, some of the characters studied may represent independent evolution through convergence in some cases (e.g., horizontal axis of the neural column) and parallelism in others (e.g., present or absent from the transverse process).

2.
Anat Rec (Hoboken) ; 294(10): 1765-82, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21901848

ABSTRACT

The exact homologies of tetrapod jaw muscles remain unresolved, and this provides a barrier for phylogenetic analysis and tracing character evolution. Here, lepidosaur jaw muscles are surveyed using direct examination of species from 23 families and published descriptions of species from 10 families. A revised nomenclature is applied according to proposed homologies with Latimeria. Among lepidosaurs, variation was found in many aspects of jaw muscle anatomy. The superficial layers mm. levator and retractor anguli oris (LAO and RAO) are present in Sphenodon but not all squamates. The external jaw adductor muscles universally present in lepidosaurs are homologous with the main adductor muscle, A2, of Latimeria and include four layers: superficialis (A2-SUP), medialis (A2-M), profundus (A2-PRO), and posterior (A2-PVM). The A2-SUP appears divided in Agamidae, Gekkota, Xantusiidae, and Varanidae. The A2-M is layered lateromedial in lizards but anteroposterior in snakes. The names pseudotemporalis (PS) and pterygomandibularis (PTM) are recommended for subdivisions of the internal adductors of reptiles and amphibians, because the homology of this muscle with the A3' and A3 ″ of Latimeria remains inconclusive. The intramandibularis of lepidosaurs and Latimeria (A-ω) are homologous. The distribution of six jaw muscle characters was found to plot more parsimoniously on phylogenies based on morphological rather than and molecular data. Character mapping indicates that Squamata presents reduction in the divisions of the A2-M, Scincoidea presents reduction or loss of LAO, and two apomorphic features are found for the Gekkota.


Subject(s)
Facial Muscles/anatomy & histology , Jaw/anatomy & histology , Masticatory Muscles/anatomy & histology , Reptiles/physiology , Animals , Facial Muscles/physiology , Jaw/physiology , Masticatory Muscles/physiology , Phylogeny
3.
Anat Rec (Hoboken) ; 293(3): 402-13, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19937637

ABSTRACT

The enormous variation of the orbit in lepidosaurs is better conceptualized in terms of composition and configuration. Broadly, the orbit varies from having totally closed rim to being open posteriorly. Two processes are responsible for changes in the components of the circumorbital series, element loss and fusion. The resulting contacts among elements are the main factors determining orbital configuration. Here, we present a revision of the gekkotan circumorbital bones in the general context of the Lepidosauria. From observations of a sample of 105 species of gekkotans prepared using different techniques, we describe the main changes in the orbit and corroborate the presence or absence of some of the ambiguous elements such as the lacrimal and the jugal. The supraorbital bones of squamates are reviewed and some problems of homology are evaluated using recent phylogenenetic hypothesis.


Subject(s)
Frontal Bone/anatomy & histology , Orbit/anatomy & histology , Reptiles/anatomy & histology , Animals , Lizards/anatomy & histology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...