Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Int J Parasitol ; 54(8-9): 401-414, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570155

ABSTRACT

Canine leishmaniosis (CanL), caused by Leishmania infantum, is a complex disease of growing importance in Europe. Clinical manifestations result from the down-modulation of the host immune response through multiple host-parasite interactions. Although several factors might influence CanL progression, this is the first known study evaluating risk factors for its different clinical stages in a large referral hospital population (n = 35.669) from an endemic area, over a 20 year period. Genome-wide scans for selection signatures were also conducted to explore the genomic component of clinical susceptibility to L. infantum infection. The prevalence of CanL was 3.2% (16.7% stage I; 43.6% stage II; 32.1% stage III; 7.6% stage IV). Dog breed (crossbreed), bodyweight (<10 kg), living conditions (indoors), regular deworming treatment, and being vaccinated against Leishmania significantly decreased the transmission risk and the risk for developing severe clinical forms. Conversely, the detection of comorbidities was associated with advanced clinical forms, particularly chronic kidney disease, neoplasia, cryptorchidism, infectious tracheobronchitis and urate urolithiasis, although those did not impact the clinical outcome. Significant associations between an increased risk of severe clinical stages and findings in the anamnesis (renal or skin-related manifestations) and physical examination (ocular findings) were also detected, highlighting their diagnostic value in referred cases of CanL. Sixteen breeds were found to be significantly more susceptible to developing severe stages of leishmaniosis (e.g. Great Dane, Rottweiler, English Springer Spaniel, Boxer, American Staffordshire Terrier, Golden Retriever), while 20 breeds displayed a clinical resistantance phenotype and, thus, are more likely to mount an efficient immune response against L. infantum (e.g. Pointer, Samoyed, Spanish Mastiff, Spanish Greyhound, English Setter, Siberian Husky). Genomic analyses of these breeds retrieved 12 regions under selection, 63 candidate genes and pinpointed multiple biological pathways such as the IRE1 branch of the unfolded protein response, which could play a critical role in clinical susceptibility to L. infantum infection.


Subject(s)
Dog Diseases , Genetic Predisposition to Disease , Leishmania infantum , Dogs , Animals , Dog Diseases/parasitology , Dog Diseases/epidemiology , Dog Diseases/genetics , Leishmania infantum/genetics , Male , Risk Factors , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/genetics , Comorbidity , Female , Disease Progression , Leishmaniasis/veterinary , Leishmaniasis/epidemiology , Leishmaniasis/parasitology , Prevalence , Genome-Wide Association Study
3.
Front Vet Sci ; 11: 1368929, 2024.
Article in English | MEDLINE | ID: mdl-38562919

ABSTRACT

Introduction: Canine leishmaniosis (CanL) is a systemic disease that affects dogs. When multiplication of the parasite cannot be controlled, dogs consistently show high levels of antigen and IgG antibodies, which lead to the formation of circulating immune complexes (CIC). Timely intervention to reduce the parasite load and CIC levels is crucial for preventing irreversible organ damage. However, a diagnostic test to quantify CIC levels is currently lacking. Methods: In this real-world study, we aimed to examine the performance of a new ELISA to measure CIC levels in dogs naturally infected with Leishmania infantum. Thirty-four dogs were treated according to their clinical condition and followed for 360 days. Before (day 0) and after treatment (days 30, 90, 180, 270, and 360), all dogs underwent a physical examination, and blood samples were obtained for CBC, biochemical profile, serum protein electrophoresis and IFAT. Serum PEG-precipitated CIC were determined by ELISA. Results: Our results indicate higher CIC levels in dogs in advanced disease stages showing higher antibody titres (p < 0.0001, r = 0.735), anemia (p < 0.0001), dysproteinemia (p < 0.0001), and proteinuria (p = 0.004). Importantly, dogs responding well to treatment exhibited declining CIC levels (p < 0.0001), while in poor responders and those experiencing relapses, CIC were consistently elevated. CIC emerged as a robust discriminator of relapse, with an area under the curve (AUC) of 0.808. The optimal cut-off to accurately identify relapse was an optical density of 1.539. Discussion: Our findings suggest that declining CIC levels should be expected in dogs showing a favorable treatment response. Conversely, in dogs displaying a poor response and recurrent clinical relapses, CIC levels will be high, emphasizing the need for vigilant monitoring. These findings suggest that CIC could serve as a valuable biomarker for disease progression, treatment efficacy, and relapse detection in CanL. Our study contributes to enhancing diagnostic approaches for CanL and underscores the potential of CIC as a complementary tool in veterinary practice. As we move forward, larger studies will be essential to confirm these findings and establish definitive cut-offs for clinical application.

4.
Med Mycol Case Rep ; 11: 9-12, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26949597

ABSTRACT

Multi-azole resistance acquisition by Candida tropicalis after prolonged antifungal therapy in a dog with urinary candidiasis is reported. Pre- and post-azole treatment isolates were clonally related and had identical silent mutations in the ERG11 gene, but the latter displayed increased azole minimum inhibitory concentrations. A novel frameshift mutation in ERG3 was found in some isolates recovered after resistance development, so it appears unlikely that this mutation is responsible for multi-azole resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...