Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5671, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971785

ABSTRACT

While block copolymer (BCP) lithography is theoretically capable of printing features smaller than 10 nm, developing practical BCPs for this purpose remains challenging. Herein, we report the creation of a chemically tailored, highly reliable, and practically applicable block copolymer and sub-10-nm line patterns by directed self-assembly. Polystyrene-block-[poly(glycidyl methacrylate)-random-poly(methyl methacrylate)] (PS-b-(PGMA-r-PMMA) or PS-b-PGM), which is based on PS-b-PMMA with an appropriate amount of introduced PGMA (10-33 mol%) is quantitatively post-functionalized with thiols. The use of 2,2,2-trifluoroethanethiol leads to polymers (PS-b-PGFMs) with Flory-Huggins interaction parameters (χ) that are 3.5-4.6-times higher than that of PS-b-PMMA and well-defined higher-order structures with domain spacings of less than 20 nm. This study leads to the smallest perpendicular lamellar domain size of 12.3 nm. Furthermore, thin-film lamellar domain alignment and vertical orientation are highly reliably and reproducibly obtained by directed self-assembly to yield line patterns that correspond to a 7.6 nm half-pitch size.

2.
Chem Mater ; 32(6)2020.
Article in English | MEDLINE | ID: mdl-33100517

ABSTRACT

The challenges of patterning next generation integrated circuits have driven the semiconductor industry to look outside of traditional lithographic methods in order to continue cost effective size scaling. The directed self-assembly (DSA) of block copolymers (BCPs) is a nanofabrication technique used to reduce the periodicity of patterns prepared with traditional optical methods. BCPs with large interaction parameters (χ eff), provide access to smaller pitches and reduced interface widths. Larger χ eff is also expected to be correlated with reduced line edge roughness (LER), a critical performance parameter in integrated circuits. One approach to increasing χ eff is blending the BCP with a phase selective additive, such as an Ionic liquid (IL). The IL does not impact the etching rates of either phase, and this enables a direct interrogation of whether the change in interface width driven by higher χ eff translates into lower LER. The effect of the IL on the layer thickness and interface width of a BCP are examined, along with the corresponding changes in LER in a DSA patterned sample. The results demonstrate that increased χ eff through additive blending will not necessarily translate to a lower LER, clarifying an important design criterion for future material systems.

3.
ACS Appl Mater Interfaces ; 10(19): 16747-16759, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29667409

ABSTRACT

Polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) is one of the prototypical block copolymers in directed self-assembly (DSA) research and development, with standardized protocols in place for processing on industrially relevant 300 mm wafers. Scaling of DSA patterns to pitches below 20 nm using PS- b-PMMA, however, is hindered by the relatively low Flory-Huggins interaction parameter, χ. Here, we investigate the approach of adding small amounts of ionic liquids (ILs) into PS- b-PMMA, which selectively segregates into the PMMA domain and effectively increases the χ parameter and thus the pattern resolution. The amount of IL additive is small enough to result in limited changes in PS- b-PMMA's surface and interfacial properties, thus maintaining industry-friendly processing by thermal annealing with a free surface. Three different ILs are studied comparatively regarding their compositional process window, capability of increasing χ, and thermal stability. By adding ∼3.1 vol % of the champion IL into a low-molecular-weight PS- b-PMMA ( Mn = 10.3k- b-9.5k), we demonstrated DSA on chemically patterned substrates of lamellar structures with feature sizes <8.5 nm. Compatibility of the PS- b-PMMMA/IL blends with the standardized processes that have been previously developed suggests that such blend materials could provide a drop-in solution for sub-10 nm lithography with the processing advantages of PS- b-PMMA.

SELECTION OF CITATIONS
SEARCH DETAIL
...