Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacogenomics J ; 7(1): 56-65, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16788565

ABSTRACT

There is increasing evidence that polymorphisms of the adenosine 5' triphosphate membrane transporters ABCB1 (P-glycoprotein, MDR1) may affect expression and function, whereas less information is available about the impact of ABCC2 (multidrug resistance-associated protein (MRP2)) single-nucleotide polymorphisms . Particularly, their role in human kidney for drug elimination and in the etiology of renal cell carcinoma is poorly understood. ABCB1 and ABCC2 mRNA and protein expression levels were determined by real-time polymerase chain reaction or immunohistochemistry in kidney cancer and adjacent unaffected cortex tissue of 82 nephrectomized renal cell cancer (RCC) patients (63 clear-cell RCC (CCRCC), 19 non-CCRCC). The DNA of all patients was genotyped for ABCB1 -2352G>A, -692T>C, 2677G>T/A (Ala893Ser/Thr), and 3435C>T, and ABCC2 -24C>T, 1249G>A (Val417Ile) and 3972C>T. ABCB1 and ABCC2 were less expressed in CCRCC than in normal cortex on mRNA as well as on protein level. Although the overall genotype frequency distribution did not differ between the patients and a matched control group, ABCB1 2677T/A and 3435T genotypes were associated with higher (P=0.02 and P=0.04) and ABCC2 -24 T with lower mRNA levels in normal tissues (0.03). The expression of ABCB1 and ABCC2 was not related to genetic variants in RCC tissue. In a reporter gene assay in HepG2 cells, the ABCC2 -24T construct showed an 18.7% reduced activity (P=0.003). In conclusion, ABCB1 and ABCC2 genotypes modulate the expression in the unaffected renal cortex of RCC patients, possibly contributing to inter-individual differences in drug and xenobiotics elimination. Their role in RCC cancer susceptibility or chemotherapy resistance needs further elucidation.


Subject(s)
Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Cortex/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Organic Anion Transporters/genetics , RNA, Messenger/genetics , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Cloning, Molecular , DNA, Neoplasm/genetics , DNA, Neoplasm/isolation & purification , Female , Genes, Reporter/genetics , Genotype , Humans , Immunohistochemistry , Male , Membrane Transport Proteins/biosynthesis , Membrane Transport Proteins/metabolism , Middle Aged , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/biosynthesis , Organic Anion Transporters/biosynthesis , Polymorphism, Genetic/physiology , RNA, Neoplasm/genetics , RNA, Neoplasm/isolation & purification , Transfection
2.
Neuroscience ; 142(4): 1071-9, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-16997484

ABSTRACT

Members of various transport protein families including ATP-binding cassette transporters and solute carriers were shown to be expressed in brain capillaries, choroid plexus, astrocytes or neurons, controlling drug and metabolite distribution to and from the brain. However, data are currently very limited on how the expression of these transport systems is affected by damage to the brain such as stroke. Therefore we studied the expression of four selected transporters, P-glycoprotein (Mdr1a/b; Abcb1a/b), Mrp5 (Abcc5), Bcrp (Abcg2), and Oatp2 (Slc21a5) in a rat model for stroke. Transporter expression was analyzed by real-time polymerase chain reaction in the periinfarcted region and protein localization and cellular phenotyping were done by immunohistochemistry and confocal immunofluorescence microscopy. After stroke, P-glycoprotein staining was detected in endothelial cells of disintegrated capillaries and by day 14 in newly generated blood vessels. There was no significant difference, however, in the Mdr1a mRNA amount in the periinfarcted region compared with the contralateral site. For Bcrp, a significant mRNA up-regulation was observed from days 3-14. This up-regulation was followed by the protein as confirmed by quantitative immunohistochemistry. Oatp2, located in the vascular endothelium, was also up-regulated at day 14. For Mrp5, an up-regulation was observed in neurons in the periinfarcted region (day 14). In conclusion, after stroke the transport proteins were up-regulated with a maximum at day 14, a time point that coincides with behavioral recuperation. The study further suggests Bcrp as a pronounced marker for the regenerative process and a possible functional role of Mrp5 in surviving neurons.


Subject(s)
Brain/metabolism , Carrier Proteins/metabolism , Cerebral Infarction/metabolism , Infarction, Middle Cerebral Artery/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Biomarkers/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Brain/physiopathology , Capillaries/metabolism , Capillaries/physiopathology , Carrier Proteins/genetics , Cerebral Infarction/physiopathology , Disease Models, Animal , Endothelial Cells/metabolism , Gene Expression Regulation/physiology , Infarction, Middle Cerebral Artery/physiopathology , Male , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Regeneration/physiology , Time Factors , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...