Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ayurveda Integr Med ; 14(6): 100825, 2023.
Article in English | MEDLINE | ID: mdl-38048723

ABSTRACT

BACKGROUND: The first emergence of the Nipah virus (NiV) in 1998 from Malaysia became a major concern when it came to light and resurfaced on different occasions thereafter. NiV is a bat-borne zoonotic and pleomorphic virus that causes severe infection in human and animal hosts. Studies revealed fruit bats are the major reservoirs as natural hosts and pigs as intermediate hosts for the spread of this infection. This became a major concern as the disease was characterized by high pathogenicity varying from 40% to 80% depending on its acuteness. Moreover, the solemnity lies in the fact that the infection transcends from being a mere mild illness to an acute respiratory infection leading to fatal encephalitis with a reportedly high mortality rate. Currently, there is no treatment or vaccine available against the NiV. Many antiviral drugs have been explored and developed but with limited efficacy. METHODOLOGY: In search of high-affinity ayurvedic alternatives, we conducted a pan-proteome in silico exploration of the NiV proteins for their interaction with the best-suited phytoconstituents. The toxicity prediction of thirty phytochemicals based on their LD50 value identified thirteen potential candidates. Molecular docking studies of those thirteen phytochemicals with five important NiV proteins identified Tanshinone I as the potential compound with a high binding affinity. RESULTS: The pharmacokinetics and pharmacodynamics studies also aided in determining the absorption, distribution, metabolism, excretion, and toxicity of the selected phytoconstituent. Interestingly, docking studies also revealed Rosmariquinone as a potent alternative to the antiviral drug Remdesivir binding the same pocket of RNA-dependent RNA polymerase of the NiV. A molecular dynamics simulation study of the surface glycoprotein of NiV against Tanshinone I showed a stable complex formation and significant allosteric changes in the protein structure, implying that these phytochemicals could be a natural alternative to synthetic drugs against NiV. CONCLUSION: This study provides preliminary evidence based on in silico analysis that the herbal molecules showed an effect against NiV. However, it is essential to further evaluate the efficacy of this approach through cell-based experiments, organoid models, and eventually clinical trials.

2.
In Silico Pharmacol ; 11(1): 12, 2023.
Article in English | MEDLINE | ID: mdl-37131867

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), possesses an important bifunctional nonstructural protein (nsp14) with a C-terminal N7-methyltransferase (N7-MTase) domain and an N-terminal domain with exoribonuclease (ExoN) activity that is required for maintaining high-fidelity viral replication. Viruses use the error-prone replication mechanism, which results in high mutation rates, to adapt quickly to stressful situations. The efficiency with which nsp14 removes mismatched nucleotides due to the presence of ExoN activity protects viruses from mutagenesis. We investigated the pharmacological role of the phytochemicals (Baicalein, Bavachinin, Emodin, Kazinol F, Lycorine, Sinigrin, Procyanidin A2, Tanshinone IIA, Tanshinone IIB, Tomentin A, and Tomentin E) against the highly conserved nsp14 protein using docking-based computational analyses in search of new potential natural drug targets. The selected eleven phytochemicals failed to bind the active site of N7-Mtase in the global docking study, while the local docking study identified the top five phytochemicals with high binding energy scores ranging from - 9.0 to - 6.4 kcal/mol. Procyanidin A2 and Tomentin A showed the highest docking score of - 9.0 and - 8.1 kcal/mol, respectively. Local docking of isoform variants was also conducted, yielding the top five phytochemicals, with Procyanidin A1 having the highest binding energy value of - 9.1 kcal/mol. The phytochemicals were later tested for pharmacokinetics and pharmacodynamics analysis for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) which resulted in choosing Tomentin A as a potential candidate. The molecular dynamics simulations studies of nsp14 revealed significant conformational changes upon complex formation with the identified compound, implying that these phytochemicals could be used as safe nutraceuticals which will impart long-term immunological competence in the human population against CoVs. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00143-7.

SELECTION OF CITATIONS
SEARCH DETAIL
...