Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 180: 168-174, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28284163

ABSTRACT

UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device.

2.
J Nanosci Nanotechnol ; 15(8): 5775-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26369151

ABSTRACT

UV-vis absorption, steady state and time resolved spectroscopic investigations in pico and nanosecond time domain were made in the different environments on a novel synthesized dyad, 3-(2-methoxynaphthalen-1-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (MNTMA) in its pristine form and when combined with gold (Au) nanoparticles i.e., in its nanocomposite structure. Both steady state and time resolved measurements coupled with the DFT calculations performed by using Gaussian 03 suit of software operated in the linux operating system show that though the dyad exhibits mainly the folded conformation in the ground state but on photoexcitation the nanocomposite form of dyad prefers to be in elongated structure in the excited state indicating its photoswitchable nature. Due to the predominancy of elongated isomeric form of the dyad in the excited state in presence of Au Nps, it appears that the dyad MNTMA may behave as a good light energy converter specially in its nanocomposite form. As larger charge separation rate (kcs ~ 4 x 10(8) s-1) is found relative to the rate associated with the energy wasting charge recombination processes (kcR ~ 3 x 10(5) s-1) in the nanocomposite form of the dyad, it demonstrates the suitability of constructing the efficient light energy conversion devices with Au-dyad hybrid nanomaterials.


Subject(s)
Electric Power Supplies , Gold/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Nanocomposites/chemistry , Organic Chemicals/chemistry , Computer Simulation , Energy Transfer/radiation effects , Equipment Design , Equipment Failure Analysis , Gold/radiation effects , Light , Materials Testing , Metal Nanoparticles/radiation effects , Nanocomposites/radiation effects , Organic Chemicals/radiation effects , Particle Size , Radiation Dosage , Spectrum Analysis/methods , Surface Properties , Transducers
3.
J Nanosci Nanotechnol ; 12(6): 4591-600, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905505

ABSTRACT

In the present paper the method of synthesis and characterization of a novel organic dyad, 3-(1-Methoxy-3,4-dihydro-naphthalyn-2-yl-)-1-p-chlorophenyl propenone, have been reported. In this paper our main thrust is to fabricate new hybrid nanocomposites by combining the organic dyad with different noble metals, semiconductor nanoparticle and noble metal-semiconductor core/shell nanocomposites. In this organic dyad, donor part is 1-Methoxy-3, 4-dihydro-naphthalen-2-carboxaldehyde with the acceptor p-chloroacetophenone. We have carried out steady state and time-resolved spectroscopic measurements on the dyad and its hybrid nanocomposite systems. Some quantum chemical calculations have also been done using Gaussian 03 software to support the experimental findings by theoretical point of view. Both from the theoretical predictions and NMR studies it reveals that in the ground state only extended (E-type or trans-type) conformation of the dyad exists whereas on photoexcitation these elongated conformers are converted into folded forms (Z- or cis-type) of the dyad, showing its photoswitchable character. Time resolved fluorescence spectroscopic (fluorescence lifetime by TCSPC method) measurements demonstrate that in chloroform medium all the organic-inorganic hybrid nanocomposites, studied in the present investigation, possess larger amount of extended conformers relative to folded ones, even in the excited singlet state. This indicates the possibility of slower energy destructive charge recombination rates relative to the rate processes associate with charge-separation within the dyad. It was found that in CHCl3 medium, the computed charge separation rate was found to be approximately 10(8) s(-1) for the dyad alone and other hybrid nanocomposite systems. The rate is found to be faster than the energy wasting charge recombination rate approximately 10(2)-10(1) s(-1), as observed from the transient absorption measurements for the corresponding hybrid systems. It indicates the conformational geometry has a great effect on the charge-separation and recombination rate processes. The suitability for the construction of efficient light energy conversion devices especially with Ag-Dyad nanocomposite of all the systems studied here is hinted from the observed long ion-pair lifetime.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Organic Chemicals/chemistry , Organic Chemicals/radiation effects , Semiconductors , Light , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Nanostructures/radiation effects , Particle Size , Surface Properties/radiation effects
4.
Article in English | MEDLINE | ID: mdl-20015683

ABSTRACT

We report steady state and time resolved fluorescence measurements on acetonitrile (ACN) solutions of the model compounds, energy donor anisole (A) and a photoswitchable acceptor N,N'-1,2-phenylene di-p-tosylamide (B) and the multichromophore (M) where A and B are connected by a spacer containing both rigid triple (acetylenic) and flexible methylene bonds. Both steady state and time correlated single photon counting measurements demonstrate that though intermolecular energy transfer, of Forster type, between the donor and acceptor moieties occurs with rate 10(8)s(-1) but when these two reacting components are linked by a spacer (multichromophore, M) the observed transfer rate ( approximately 10(11)s(-1)) enhances. This seemingly indicates that the imposition of the spacer by inserting a triple bond may facilitate in the propagation of electronic excitation energy through bond. The time resolved fluorescence measurements along with the theoretical predictions using Configuration interaction singles (CIS) method by using 6-31G (d,p) basis set, implemented in the Gaussian package indicate the formations of the two excited conformers of B. The experimental findings made from the steady state and time resolved fluorescence measurements demonstrate that, though two different isomeric species of the acceptor B are formed in the excited singlet states, the prevailing singlet-singlet nonradiative energy transfer route was found from the donor A to the relatively longer-lived isomeric species of B.


Subject(s)
Anisoles/chemistry , Energy Transfer , Photochemistry , Tosyl Compounds/chemistry , Molecular Structure , Spectrometry, Fluorescence , Tosyl Compounds/chemical synthesis
5.
Article in English | MEDLINE | ID: mdl-16859957

ABSTRACT

From both steady state and fluorescence lifetime measurements it reveals that due to photoexcitation of benzotriazole (BZ) part of the bichromophore, 9(1-H-benzotriazole-lylmethyl)-9H-carbazole (BHC), singlet-singlet energy transfer takes place to populate the lowest excited singlet of carbazole (CZ). CZ, thus being excited indirectly via energy transfer process, undergoes strong charge transfer (CT) reaction with the surrounding polar medium acetonitrile (ACN). On the other hand, very weak CT band was apparent when CZ part, within BHC, was directly excited. In less polar tetrahydrofuran (THF) and polar benzonitrile (BN) environment, lack of formation of CT band strongly suggests in favor of the electron-accepting behavior of ACN. Moreover, by measuring the emission spectra of BHC in microcrystals and of 30 bilayers mixed LB film at high mole fraction of BHC molecules, the possibility of excimer formation or aggregation has been ruled out. Thus, BHC, when dissolved in ACN, acts as a triad system of BZ-CZ-ACN where BZ acts as an antenna molecule and CZ as a reaction center. The possible role of the bichromophoric system BHC as an artificial photosynthetic or solar energy conversion device has been hinted.


Subject(s)
Benzothiazoles/chemistry , Carbazoles/chemistry , Photosynthesis , Acetonitriles , Fluorescence , Hydrogen-Ion Concentration , Kinetics , Photochemistry , Spectrometry, Fluorescence , Temperature
6.
J Phys Chem A ; 110(17): 5665-73, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16640361

ABSTRACT

The photophysical properties and the nature of the photoinduced electron transfer (PET) reactions within a synthesized anisole (A)-thioindoxyl (T) dyad system (24MBTO) have been studied by electrochemical, steady-state, and time-resolved spectroscopic techniques. Computations on the dyad were performed both in gas phase as well as solvent environment by TD-DFT method with B3LYP density function. The geometry optimization calculation of 24MBTO was done by 6-311G(d,p) basis function set implemented in the Gaussian package. The theoretical values of singlet vertical excitation energies were found to correlate well with the experimentally observed ones. The electrochemical measurements indicate the possibility of occurrence of PET reactions within 24MBTO between the linked redox centers A and T. Both steady-state and time-resolved spectroscopic measurements on the novel synthesized 24MBTO dyad demonstrate the formations of the two types of isomeric species: Z- and E- forms, resulted from the charge separation reactions. From the detailed studies it reveals that the present thioaurone may behave as a versatile photoswitchable system. It has been hinted that the loss process (charge recombination) within 24MBTO could possibly be prevented by incorporating it within the hydrophobic cavity of beta-cyclodextrin (betaCD).

7.
Org Lett ; 7(5): 827-30, 2005 Mar 03.
Article in English | MEDLINE | ID: mdl-15727451

ABSTRACT

The mechanism of the metalation of 2-biphenyl carboxylic acid (1) with the Lochmann-Schlosser superbase was determined by deuteriolysis. Both ortho (C(3)) and remote (C(2')) positions are metalated. The C(2')-metalated species 2 cyclizes instantaneously. Under suitable conditions, the doubly charged geminal dimetallo dialkoxide group C(OM)(2) 4 directs metalation in the adjacent position (C(1)), affording a stable 1-metallo-9H-fluorene-9,9-dimetallo dialkoxide 5 that can be trapped by diverse electrophiles to give 1-substituted 9H-fluoren-9-ones 7 and 9 after acidic workup. [structure: see text]

SELECTION OF CITATIONS
SEARCH DETAIL
...