Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Respir J ; 20(6): 1538-44, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12503716

ABSTRACT

The interrupter technique is commonly adopted to monitor respiratory resistance (Rrs,int) during mechanical ventilation; however, Rrs,int is often interpreted as an index of airway resistance (Raw). This study compared the values of Rrs,int provided by a Siemens 940 Lung Mechanics Monitor with total respiratory impedance (Zrs) parameters in 39 patients with normal spirometric parameters, who were undergoing elective coronary bypass surgery. Zrs was determined at the airway opening with pseudorandom oscillations of 0.2-6 Hz at end inspiration. Raw and tissue resistance (Rti) were derived from the Zrs data by model fitting; Rti and total resistance (Rrs,osc=Raw+Rti) were calculated at the actual respirator frequencies. Lower airway resistance (Rawl) was estimated by measuring tracheal pressure. Although good agreement was obtained between Rrs,osc and Rrs,int, with a ratio of 1.07+/-0.19 (mean+/-SD), they correlated poorly (r2=0.36). Rti and the equipment component of Raw accounted for most of Rrs,osc (39.8+/-11.9 and 43.0+/-6.9%, respectively), whereas only a small portion belonged to Rawl (17.2+/-6.3%). It is concluded that respiratory resistance may become very insensitive to changes in lower airway resistance and therefore, inappropriate for following alterations in airway tone during mechanical ventilation, especially in patients with relatively normal respiratory mechanics, where the tissue and equipment resistances represent the vast majority of the total resistance.


Subject(s)
Airway Resistance/physiology , Respiration, Artificial , Coronary Artery Bypass , Female , Humans , Male , Middle Aged , Monitoring, Physiologic/methods , Respiratory Mechanics/physiology , Spirometry
SELECTION OF CITATIONS
SEARCH DETAIL
...