Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Hematol ; 99(3): 336-349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38165047

ABSTRACT

Mechanisms through which mature megakaryocytes (Mks) and their progenitors sense the bone marrow extracellular matrix to promote lineage differentiation in health and disease are still partially understood. We found PIEZO1, a mechanosensitive cation channel, to be expressed in mouse and human Mks. Human mutations in PIEZO1 have been described to be associated with blood cell disorders. Yet, a role for PIEZO1 in megakaryopoiesis and proplatelet formation has never been investigated. Here, we show that activation of PIEZO1 increases the number of immature Mks in mice, while the number of mature Mks and Mk ploidy level are reduced. Piezo1/2 knockout mice show an increase in Mk size and platelet count, both at basal state and upon marrow regeneration. Similarly, in human samples, PIEZO1 is expressed during megakaryopoiesis. Its activation reduces Mk size, ploidy, maturation, and proplatelet extension. Resulting effects of PIEZO1 activation on Mks resemble the profile in Primary Myelofibrosis (PMF). Intriguingly, Mks derived from Jak2V617F PMF mice show significantly elevated PIEZO1 expression, compared to wild-type controls. Accordingly, Mks isolated from bone marrow aspirates of JAK2V617F PMF patients show increased PIEZO1 expression compared to Essential Thrombocythemia. Most importantly, PIEZO1 expression in bone marrow Mks is inversely correlated with patient platelet count. The ploidy, maturation, and proplatelet formation of Mks from JAK2V617F PMF patients are rescued upon PIEZO1 inhibition. Together, our data suggest that PIEZO1 places a brake on Mk maturation and platelet formation in physiology, and its upregulation in PMF Mks might contribute to aggravating some hallmarks of the disease.


Subject(s)
Primary Myelofibrosis , Thrombocythemia, Essential , Humans , Animals , Mice , Megakaryocytes/metabolism , Primary Myelofibrosis/genetics , Bone Marrow , Thrombopoiesis/genetics , Thrombocythemia, Essential/metabolism , Blood Platelets/metabolism , Ion Channels/genetics , Ion Channels/metabolism
2.
Med Eng Phys ; 114: 103967, 2023 04.
Article in English | MEDLINE | ID: mdl-37030893

ABSTRACT

The occurrence of periprosthetic femoral fractures (PFF) has increased in people with osteoporosis due to decreased bone density, poor bone quality, and stress shielding from prosthetic implants. PFF treatment in the elderly is a genuine concern for orthopaedic surgeons as no effective solution currently exists. Therefore, the goal of this study was to determine whether the design of a novel advanced medicinal therapeutic device (AMTD) manufactured from a polymeric blend in combination with a fracture fixation plate in the femur is capable of withstanding physiological loads without failure during the bone regenerative process. This was achieved by developing a finite element (FE) model of the AMTD together with a fracture fixation assembly, and a femur with an implanted femoral stem. The response of both normal and osteoporotic bone was investigated by implementing their respective material properties in the model. Physiological loading simulating the peak load during standing, walking, and stair climbing was investigated. The results showed that the fixation assembly was the prime load bearing component for this configuration of devices. Within the fixation assembly, the bone screws were found to have the highest stresses in the fixation assembly for all the loading conditions. Whereas the stresses within the AMTD were significantly below the maximum yield strength of the device's polymeric blend material. Furthermore, this study also investigated the performance of different fixation assembly materials and found Ti-6Al-4V to be the optimal material choice from those included in this study.


Subject(s)
Femoral Fractures , Osteoporotic Fractures , Periprosthetic Fractures , Humans , Aged , Osteoporotic Fractures/surgery , Fracture Fixation, Internal , Femur/surgery , Femoral Fractures/surgery , Bone Screws , Bone Plates , Periprosthetic Fractures/surgery , Finite Element Analysis , Biomechanical Phenomena
3.
Cancers (Basel) ; 14(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35008423

ABSTRACT

PURPOSE: The biochemical composition and architecture of the extracellular matrix (ECM) is known to condition development and invasiveness of neoplasms. To clarify this point, we analyzed ECM stiffness, collagen cross-linking and anisotropy in lymph nodes (LN) of Hodgkin lymphomas (HL), follicular lymphomas (FL) and diffuse large B-cell lymphomas (DLBCL), compared with non-neoplastic LN (LDN). METHODS AND RESULTS: We found increased elastic (Young's) modulus in HL and advanced FL (grade 3A) over LDN, FL grade 1-2 and DLBCL. Digital imaging evidenced larger stromal areas in HL, where increased collagen cross-linking was found; in turn, architectural modifications were documented in FL3A by scanning electron microscopy and enhanced anisotropy by polarized light microscopy. Interestingly, HL expressed high levels of lysyl oxidase (LOX), an enzyme responsible for collagen cross-linking. Using gelatin scaffolds fabricated with a low elastic modulus, comparable to that of non-neoplastic tissues, we demonstrated that HL LN-derived mesenchymal stromal cells and HL cells increased the Young's modulus of the extracellular microenvironment through the expression of LOX. Indeed, LOX inhibition by ß-aminopropionitrile prevented the gelatin stiffness increase. CONCLUSIONS: These data indicate that different mechanical, topographical and/or architectural modifications of ECM are detectable in human lymphomas and are related to their histotype and grading.

4.
Int J Mol Sci ; 22(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34502506

ABSTRACT

Poultry feathers are among the most abundant and polluting keratin-rich waste biomasses. In this work, we developed a one-pot microwave-assisted process for eco-friendly keratin extraction from poultry feathers followed by a direct electrospinning (ES) of the raw extract, without further purification, to obtain keratin-based bioplastics. This microwave-assisted keratin extraction (MAE) was conducted in acetic acid 70% v/v. The effects of extraction time, solvent/feathers ratio, and heating mode (MAE vs. conventional heating) on the extraction yield were investigated. The highest keratin yield (26 ± 1% w/w with respect to initial feathers) was obtained after 5 h of MAE. Waste-derived keratin were blended with gelatin to fabricate keratin-based biodegradable and biocompatible bioplastics via ES, using 3-(Glycidyloxypropyl)trimethoxysilane (GPTMS) as a cross-linking agent. A full characterization of their thermal, mechanical, and barrier properties was performed by differential scanning calorimetry, thermogravimetric analysis, uniaxial tensile tests, and water permeability measurements. Their morphology and protein structure were investigated using scanning electron microscopy and attenuated total reflection-infrared spectroscopy. All these characterizations highlighted that the properties of the keratin-based bioplastics can be modulated by changing keratin and GPTMS concentrations. These bioplastics could be applied in areas such as bio-packaging and filtration/purification membranes.


Subject(s)
Feathers/chemistry , Keratins/chemistry , Keratins/isolation & purification , Acetic Acid/chemistry , Animals , Calorimetry, Differential Scanning/methods , Microscopy, Electron, Scanning/methods , Microwaves , Solvents , Spectroscopy, Fourier Transform Infrared/methods
5.
Macromol Biosci ; 21(9): e2100168, 2021 09.
Article in English | MEDLINE | ID: mdl-34173326

ABSTRACT

Developing biomaterial formulations with specific biochemical characteristics and physical properties suitable for bioprinting of 3D scaffolds is a pivotal challenge in tissue engineering. Therefore, the design of novel bioprintable formulations is a continuously evolving research field. In this work, the authors aim at expanding the library of biomaterial inks by blending two natural biopolymers: pectin and gelatin. Cytocompatible formulations are obtained by combining pectin and gelatin at different ratios and using (3-glycidyloxypropyl)trimethoxysilane (GPTMS) as single crosslinking agent. It is shown that the developed formulations are all suitable for extrusion-based 3D bioprinting. Self-supporting scaffolds with a designed macroporosity and micropores in the bioprinted struts are successfully obtained by combining extrusion-based bioprinting and freeze-drying. The presence of gelatin in these formulations allows for the modulation of porosity, of water uptake and of scaffold stiffness in respect to pure pectin scaffolds. Results demonstrate that these new biomaterial formulations, processed with this specific approach, are promising candidates for the fabrication of tissue-like scaffolds for tissue regeneration.


Subject(s)
Bioprinting , Biocompatible Materials/chemistry , Gelatin/chemistry , Hydrogels/chemistry , Pectins , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
6.
Front Med Technol ; 2: 571626, 2020.
Article in English | MEDLINE | ID: mdl-35047879

ABSTRACT

Extrusion-based three-dimensional (3D) bioprinting is nowadays the most efficient additive manufacturing technology to fabricate well-defined and clinical-scale relevant 3D scaffolds, exploiting soft biomaterials. However, trial and error approaches are usually employed to achieve the desired structures, thus leading to a waste of time and material. In this work, we show the potential of finite element (FE) simulation in predicting the printability of a biomaterial, in terms of extrudability and scaffold mechanical stability over time. To this end, we firstly rheologically characterized a newly developed self-assembling peptide hydrogel (SAPH). Subsequently, we modeled both the extrusion process of the SAPHs and the stability over time of a 3D-bioprinted wood-pile scaffold. FE modeling revealed that the simulated SAPHs and printing setups led to a successful extrusion, within a range of shear stresses that are not detrimental for cells. Finally, we successfully 3D bioprinted human ear-shaped scaffolds with in vivo dimensions and several protrusion planes by bioplotting the SAPH into a poly(vinyl alcohol)-poly(vinyl pyrrolidone) copolymer, which was identified as a suitable bioprinting strategy by mechanical FE simulation.

7.
Biomacromolecules ; 21(2): 319-327, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31808680

ABSTRACT

Developing green and nontoxic biomaterials, derived from renewable sources and processable through 3D bioprinting technologies, is an emerging challenge of sustainable tissue engineering. Here, pectin from citrus peels was cross-linked for the first time with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) through a one-pot procedure. Freeze-dried porous pectin sponges, with tunable properties in terms of porosity, water uptake, and compressive modulus, were obtained by controlling GPTMS content. Cell experiments showed that GPTMS did not affect the cytocompatibility of pectin. The addition of GPTMS improved the printability of pectin due to an increase of viscosity and yield stress. Three-dimensional woodpile and complex anatomical-shaped scaffolds with interconnected micro- and macropores were, therefore, bioprinted without the use of any additional support material. These results show the great potential of using pectin cross-linked with GPTMS as biomaterial ink to fabricate patient-specific scaffolds, which could be used to promote tissue regeneration in vivo.


Subject(s)
Bioprinting/methods , Epoxy Compounds/chemistry , Pectins/chemistry , Silanes/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cells, Cultured , Cross-Linking Reagents/chemistry , Ear , Freeze Drying , Humans , Materials Testing , Mesenchymal Stem Cells/cytology , Nose , Porosity , Rheology , Tissue Engineering/methods , Water/chemistry
8.
Article in English | MEDLINE | ID: mdl-31380365

ABSTRACT

The aim of this study is the analysis and characterization of a hydrolyzed keratin-based biomaterial and its processing using electrospinning technology to develop in vitro tissue models. This biomaterial, extracted from poultry feathers, was mixed with type A porcine gelatin and cross-linked with γ-glycidyloxy-propyl-trimethoxy-silane (GPTMS) to be casted initially in the form of film and characterized in terms of swelling, contact angle, mechanical properties, and surface charge density. After these chemical-physical characterizations, electrospun nanofibers structures were manufactured and their mechanical properties were evaluated. Finally, cell response was analyzed by testing the efficacy of keratin-based structures in sustaining cell vitality and proliferation over 4 days of human epithelial, rat neuronal and human primary skin fibroblast cells.

9.
Int J Artif Organs ; 42(10): 586-594, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31204554

ABSTRACT

One of the main challenges of the interface-tissue engineering is the regeneration of diseased or damaged interfacial native tissues that are heterogeneous both in composition and in structure. In order to achieve this objective, innovative fabrication techniques have to be investigated. This work describes the design, fabrication, and validation of a novel mixing system to be integrated into a double-extruder bioprinter, based on an ultrasonic probe included into a mixing chamber. To validate the quality and the influence of mixing time, different nanohydroxyapatite-gelatin samples were printed. Mechanical characterization, micro-computed tomography, and thermogravimetric analysis were carried out. Samples obtained from three-dimensional bioprinting using the mixing chamber were compared to samples obtained by deposition of the same final solution obtained by manually operated ultrasound probe, showing no statistical differences. Results obtained from samples characterization allow to consider the proposed mixing system as a promising tool for the fabrication of graduated structures which are increasingly being used in interface-tissue engineering.


Subject(s)
Bioprinting , Tissue Engineering/methods , Tissue Scaffolds , Ultrasonics , Durapatite , Gelatin , Humans , Printing, Three-Dimensional , X-Ray Microtomography
10.
Haematologica ; 102(7): 1150-1160, 2017 07.
Article in English | MEDLINE | ID: mdl-28411253

ABSTRACT

Megakaryocytes (MK) in the bone marrow (BM) are immersed in a network of extracellular matrix components that regulates platelet release into the circulation. Combining biological and bioengineering approaches, we found that the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechano-sensitive ion channel, is induced upon MK adhesion on softer matrices. This response promoted platelet production by triggering a cascade of events that lead to calcium influx, ß1 integrin activation and internalization, and Akt phosphorylation, responses not found on stiffer matrices. Lysyl oxidase (LOX) is a physiological modulator of BM matrix stiffness via collagen crosslinking. In vivo inhibition of LOX and consequent matrix softening lead to TRPV4 activation cascade and increased platelet levels. At the same time, in vitro proplatelet formation was reduced on a recombinant enzyme-mediated stiffer collagen. These results suggest a novel mechanism by which MKs, through TRPV4, sense extracellular matrix environmental rigidity and release platelets accordingly.


Subject(s)
Blood Platelets/cytology , Blood Platelets/metabolism , Megakaryocytes/cytology , Megakaryocytes/metabolism , Thrombopoiesis , Animals , Calcium/metabolism , Cell Adhesion , Cell Differentiation , Collagen Type I/metabolism , Collagen Type IV/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Integrin beta1/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport , Protein-Lysine 6-Oxidase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...