Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
ArXiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562443

ABSTRACT

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.

2.
Neurophotonics ; 11(Suppl 1): S11510, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38617592

ABSTRACT

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.

3.
Sci Adv ; 10(3): eadi3442, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38232161

ABSTRACT

Imaging at depth in opaque materials has long been a challenge. Recently, wavefront shaping has enabled notable advance for deep imaging. Nevertheless, most noninvasive wavefront-shaping methods require cameras, lack the sensitivity for deep imaging under weak optical signals, or can only focus on a single "guidestar." Here, we retrieve the transmission matrix (TM) noninvasively using two-photon fluorescence exploiting a single-pixel detection combined with a computational framework, allowing to achieve single-target focus on multiple guidestars spread beyond the memory effect range. In addition, if we assume that memory effect correlations exist in the TM, we are able to substantially reduce the number of measurements needed.

4.
Nat Nanotechnol ; 18(10): 1185-1194, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37591934

ABSTRACT

Understanding (de)lithiation heterogeneities in battery materials is key to ensure optimal electrochemical performance. However, this remains challenging due to the three-dimensional morphology of electrode particles, the involvement of both solid- and liquid-phase reactants and a range of relevant timescales (seconds to hours). Here we overcome this problem and demonstrate the use of confocal microscopy for the simultaneous three-dimensional operando measurement of lithium-ion dynamics in individual agglomerate particles, and the electrolyte in batteries. We examine two technologically important cathode materials: LixCoO2 and LixNi0.8Mn0.1Co0.1O2. The surface-to-core transport velocity of Li-phase fronts and volume changes are captured as a function of cycling rate. Additionally, we visualize heterogeneities in the bulk and at agglomerate surfaces during cycling, and image microscopic liquid electrolyte concentration gradients. We discover that surface-limited reactions and intra-agglomerate competing rates control (de)lithiation and structural heterogeneities in agglomerate-based electrodes. Importantly, the conditions under which optical imaging can be performed inside the complex environments of battery electrodes are outlined.

5.
Nano Lett ; 23(16): 7288-7296, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37552026

ABSTRACT

Photobatteries, batteries with a light-sensitive electrode, have recently been proposed as a way of simultaneously capturing and storing solar energy in a single device. Despite reports of photocharging with multiple different electrode materials, the overall mechanism of operation remains poorly understood. Here, we use operando optical reflection microscopy to investigate light-induced charging in LixV2O5 electrodes. We image the electrode, at the single-particle level, under three conditions: (a) with a closed circuit and light but no electronic power source (photocharging), (b) during galvanostatic cycling with light (photoenhanced), and (c) with heat but no light (thermal). We demonstrate that light can indeed drive lithiation changes in LixV2O5 while maintaining charge neutrality, possibly via a combination of faradaic and nonfaradaic effects taking place in individual particles. Our results provide an addition to the photobattery mechanistic model highlighting that both intercalation-based charging and lithium concentration polarization effects contribute to the increased photocharging capacity.

6.
Proc Natl Acad Sci U S A ; 120(17): e2220662120, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37068232

ABSTRACT

Unlike the interface between two immiscible electrolyte solutions (ITIES) formed between water and polar solvents, molecular understanding of the liquid-liquid interface formed for aqueous biphasic systems (ABSs) is relatively limited and mostly relies on surface tension measurements and thermodynamic models. Here, high-resolution Raman imaging is used to provide spatial and chemical resolution of the interface of lithium chloride - lithium bis(trifluoromethanesulfonyl)imide - water (LiCl-LiTFSI-water) and HCl-LiTFSI-water, prototypical salt-salt ABSs found in a range of electrochemical applications. The concentration profiles of both TFSI anions and water are found to be sigmoidal thus not showing any signs of a positive adsorption for both salts and solvent. More striking, however, is the length at which the concentration profiles extend, ranging from 11 to 2 µm with increasing concentrations, compared to a few nanometers for ITIES. We thus reveal that unlike ITIES, salt-salt ABSs do not have a molecularly sharp interface but rather form an interphase with a gradual change of environment from one phase to the other. This knowledge represents a major stepping-stone in the understanding of aqueous interfaces, key for mastering ion or electron transfer dynamics in a wide range of biological and technological settings including novel battery technologies such as membraneless redox flow and dual-ion batteries.

7.
Opt Lett ; 47(9): 2145-2148, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35486745

ABSTRACT

Raman scattering is a chemically selective probing mechanism with diverse applications in industry and clinical settings. Yet, most samples are optically opaque limiting the applicability of Raman probing at depth. Here, we demonstrate chemically selective energy deposition behind a scattering medium by combining prior information on the chemical's spectrum with the measurement of a spectrally resolved Raman speckle as a feedback mechanism for wavefront shaping. We demonstrate unprecedented sixfold signal enhancement in an epi-geometry, realizing targeted energy deposition and focusing on individual Raman active particles.


Subject(s)
Spectrum Analysis, Raman , Physical Phenomena
8.
Nat Commun ; 13(1): 1447, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304460

ABSTRACT

Non-invasive optical imaging techniques are essential diagnostic tools in many fields. Although various recent methods have been proposed to utilize and control light in multiple scattering media, non-invasive optical imaging through and inside scattering layers across a large field of view remains elusive due to the physical limits set by the optical memory effect, especially without wavefront shaping techniques. Here, we demonstrate an approach that enables non-invasive fluorescence imaging behind scattering layers with field-of-views extending well beyond the optical memory effect. The method consists in demixing the speckle patterns emitted by a fluorescent object under variable unknown random illumination, using matrix factorization and a novel fingerprint-based reconstruction. Experimental validation shows the efficiency and robustness of the method with various fluorescent samples, covering a field of view up to three times the optical memory effect range. Our non-invasive imaging technique is simple, neither requires a spatial light modulator nor a guide star, and can be generalized to a wide range of incoherent contrast mechanisms and illumination schemes.


Subject(s)
Lighting , Optical Imaging , Optical Imaging/methods
9.
Opt Lett ; 47(23): 6233-6236, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37219215

ABSTRACT

Three-photon (3P) microscopy is getting traction due to its superior performance in deep tissues. Yet, aberrations and light scattering still pose one of the main limitations in the attainable depth ranges for high-resolution imaging. Here, we show scattering correcting wavefront shaping with a simple continuous optimization algorithm, guided by the integrated 3P fluorescence signal. We demonstrate focusing and imaging behind scattering layers and investigate convergence trajectories for different sample geometries and feedback non-linearities. Furthermore, we show imaging through a mouse skull and demonstrate a novel, to the best of our knowledge, fast phase estimation scheme that substantially increases the speed at which the optimal correction can be found.

10.
Opt Express ; 29(6): 8985-8996, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820337

ABSTRACT

Propagation of an ultrashort pulse of light through strongly scattering media generates an intricate spatio-spectral speckle that can be described by means of the multi-spectral transmission matrix (MSTM). In conjunction with a spatial light modulator, the MSTM enables the manipulation of the pulse leaving the medium; in particular focusing it at any desired spatial position and/or time. Here, we demonstrate how to engineer the point-spread-function of the focused beam both spatially and spectrally, from the measured MSTM. It consists of numerically filtering the spatial content at each wavelength of the matrix prior to focusing. We experimentally report on the versatility of the technique through several examples, in particular as an alternative to simultaneous spatial and temporal focusing, with potential applications in multiphoton microscopy.

11.
J Phys Chem Lett ; 11(3): 624-631, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31899643

ABSTRACT

The properties of water at an electrified graphene electrode are studied via classical molecular dynamics simulations with a constant potential approach. We show that the value of the applied electrode potential has dramatic effects on the structure and dynamics of interfacial water molecules. While a positive potential slows down the reorientational and translational dynamics of water, an increasing negative potential first accelerates the interfacial water dynamics before a deceleration at very large magnitude potential values. Further, our spectroscopic calculations indicate that the water rearrangements induced by electrified interfaces can be probed experimentally. In particular, the calculated water vibrational sum-frequency generation (SFG) spectra show that SFG specifically reports on the first two water layers at 0 V but that at larger magnitude applied potentials the resulting static field induces long-range contributions to the spectrum. Electrified graphene interfaces provide promising paradigm systems for comprehending both short- and long-range neighboring aqueous system impacts.

12.
Opt Express ; 27(20): 28384-28394, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684592

ABSTRACT

Wavefront shaping is a powerful method to refocus light through a scattering medium. Its application to large spectral bandwidths or multiple wavelengths refocusing for nonlinear bio-imaging in-depth is however limited by spectral decorrelations. In this work, we demonstrate ways to access a large spectral memory of a refocus in thin scattering media and thick forward-scattering biological tissues. First, we show that the accessible spectral bandwidth through a scattering medium involves an axial spatio-spectral coupling, which can be minimized when working in a confocal geometry. Second, we show that this bandwidth can be further enlarged when working in a broadband excitation regime. These results open important prospects for multispectral nonlinear imaging through scattering media.

13.
Langmuir ; 35(48): 15500-15514, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31362502

ABSTRACT

Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the surface forces apparatus-the µSFA-that has been designed for ease of use and multimodal capabilities with the retention of the capabilities of other SFA models including accurate measurements of the surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, and biospecific). The small physical size of the µSFA, compared to previous SFA models, makes it portable and suitable for integration into commercially available optical and fluorescence light microscopes, as demonstrated here. The large optical path entry and exit ports make it ideal for concurrent force measurements and spectroscopy studies. Examples of the use of the µSFA in combination with surface plasmon resonance (SPR) and Raman spectroscopy measurements are presented. Because of the short working distance constraints associated with Raman spectroscopy, an interferometric technique was developed and applied to calculate the intersurface separation distance based on Newton's rings. The introduction of the µSFA will mark a transition in SFA usage from primarily physical characterization to concurrent physical characterization with in situ chemical and biological characterization to study interfacial phenomena, including (but not limited to) molecular adsorption, fluid flow dynamics, the determination of surface species and morphology, and (bio)molecular binding kinetics.

14.
Langmuir ; 35(48): 15543-15551, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31310142

ABSTRACT

Modern interfacial science is increasingly multidisciplinary. Unique insight into interfacial interactions requires new multimodal techniques for interrogating surfaces with simultaneous complementary physical and chemical measurements. Here, we describe the design and testing of a microscope that incorporates a miniature surface forces apparatus (µSFA) in sphere vs flat geometry for force-distance measurements, while simultaneously acquiring Raman spectra of the confined zone. The simple optical setup isolates independent optical paths for (i) the illumination and imaging of Newton's rings and (ii) Raman scattering excitation and efficient signal collection. We benchmark the methodology by examining Teflon thin films in asymmetric (Teflon-water-glass) and symmetric (Teflon-water-Teflon) configurations. Water is observed near the Teflon-glass interface with nanometer-scale sensitivity in both the distance and Raman signals. We perform chemically resolved, label-free imaging of confined contact regions between Teflon and glass surfaces immersed in water. Remarkably, we estimate that the combined approach enables vibrational spectroscopy with single water monolayer sensitivity within minutes. Altogether, the Raman-µSFA allows exploration of molecular confinement between surfaces with chemical selectivity and correlation with interaction forces.

15.
Anal Chem ; 90(12): 7197-7203, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29761698

ABSTRACT

We experimentally implement a compressive Raman technology (CRT) that incorporates chemometric analysis directly into the spectrometer hardware by means of a digital micromirror device (DMD). The DMD is a programmable optical filter on which optimized binary filters are displayed. The latter are generated with an algorithm based on the Cramer-Rao lower bound. We compared the developed CRT microspectrometer with two conventional state-of-the-art Raman hyperspectral imaging systems on samples mimicking microcalcifications relevant for breast cancer diagnosis. The CRT limit of detection significantly improves, when compared to the CCD based system, and CRT ultimately allows 100× and 10× faster acquisition speeds than the CCD- and EMCCD-based systems, respectively.


Subject(s)
Breast Neoplasms/chemistry , Breast Neoplasms/diagnosis , Calcinosis , Algorithms , Female , Humans , Spectrum Analysis, Raman
16.
J Phys Chem Lett ; 9(7): 1528-1533, 2018 Apr 05.
Article in English | MEDLINE | ID: mdl-29521507

ABSTRACT

Over recent decades, lipid membranes have become standard models for examining the biophysics and biochemistry of cell membranes. Interrogation of lipid domains within biomembranes is generally done with fluorescence microscopy via exogenous chemical probes. However, fluorophores have limited partitioning tunability, with the majority segregating into the liquid-disordered phase, and fluorescence only strictly reports on the small percentage of tagged lipids. We present simple, label-free imaging of domain formation in lipid monolayers, with chemical selectivity in unraveling lipid and cholesterol composition in different domain types. Exploiting conventional vibrational contrast in spontaneous Raman imaging, combined with chemometrics analysis, allows for examination of ternary systems containing saturated lipids, unsaturated lipids, and cholesterol. We confirm features commonly observed by fluorescence microscopy and provide a quantitative thermodynamic analysis of cholesterol distribution at the single-monolayer level.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Cholesterol/chemistry , Membranes, Artificial , Phosphatidylcholines/chemistry , Membrane Microdomains/chemistry , Spectrum Analysis, Raman , Thermodynamics
17.
J Opt Soc Am A Opt Image Sci Vis ; 35(1): 125-134, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328101

ABSTRACT

The precision of proportion estimation with binary filtering of a Raman spectrum mixture is analyzed when the number of binary filters is equal to the number of present species and when the measurements are corrupted with Poisson photon noise. It is shown that the Cramer-Rao bound provides a useful methodology to analyze the performance of such an approach, in particular when the binary filters are orthogonal. It is demonstrated that a simple linear mean square error estimation method is efficient (i.e., has a variance equal to the Cramer-Rao bound). Evolutions of the Cramer-Rao bound are analyzed when the measuring times are optimized or when the considered proportion for binary filter synthesis is not optimized. Two strategies for the appropriate choice of this considered proportion are also analyzed for the binary filter synthesis.

18.
Sci Adv ; 3(9): e1600743, 2017 09.
Article in English | MEDLINE | ID: mdl-28879230

ABSTRACT

The control and use of light polarization in optical sciences and engineering are widespread. Despite remarkable developments in polarization-resolved imaging for life sciences, their transposition to strongly scattering media is currently not possible, because of the inherent depolarization effects arising from multiple scattering. We show an unprecedented phenomenon that opens new possibilities for polarization-resolved microscopy in strongly scattering media: polarization recovery via broadband wavefront shaping. We demonstrate focusing and recovery of the original injected polarization state without using any polarizing optics at the detection. To enable molecular-level structural imaging, an arbitrary rotation of the input polarization does not degrade the quality of the focus. We further exploit the robustness of polarization recovery for structural imaging of biological tissues through scattering media. We retrieve molecular-level organization information of collagen fibers by polarization-resolved second harmonic generation, a topic of wide interest for diagnosis in biomedical optics. Ultimately, the observation of this new phenomenon paves the way for extending current polarization-based methods to strongly scattering environments.

19.
Opt Lett ; 42(9): 1696-1699, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28454138

ABSTRACT

We report a simple add-on for broadband stimulated Raman scattering (SRS) microscopes to enable fast and programmable spectroscopy acquisition. It comprises a conventional dispersive spectrometer layout incorporating a fast digital micromirror device (DMD). The approach is validated by acquiring SRS spectra of standard chemicals. We demonstrate a DMD's advantage in broadband SRS by showing higher signal-to-noise ratio using a multiplexed Hadamard spectral basis and compressive sensing detection. Our results apply to a variety of frequency-domain pump-probe spectroscopy.

20.
Opt Express ; 23(7): 8960-73, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968733

ABSTRACT

Polarization resolved nonlinear microscopy (PRNM) is a powerful technique to gain microscopic structural information in biological media. However, deep imaging in a variety of biological specimens is hindered by light scattering phenomena, which not only degrades the image quality but also affects the polarization state purity. In order to quantify this phenomenon and give a framework for polarization resolved microscopy in thick scattering tissues, we develop a characterization methodology based on four wave mixing (FWM) process. More specifically, we take advantage of two unique features of FWM, meaning its ability to produce an intrinsic in-depth local coherent source and its capacity to quantify the presence of light depolarization in isotropic regions inside a sample. By exploring diverse experimental layouts in phantoms with different scattering properties, we study systematically the influence of scattering on the nonlinear excitation and emission processes. The results show that depolarization mechanisms for the nonlinearly generated photons are highly dependent on the scattering center size, the geometry used (epi/forward) and, most importantly, on the thickness of the sample. We show that the use of an un-analyzed detection makes the polarization-dependence read-out highly robust to scattering effects, even in regimes where imaging might be degraded. The effects are illustrated in polarization resolved imaging of myelin lipid organization in mouse spinal cords.

SELECTION OF CITATIONS
SEARCH DETAIL
...