Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 123(12): 2813-2831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37393218

ABSTRACT

PURPOSE: While exercise recovery may be beneficial from a physiological point of view, it may be detrimental to subsequent anaerobic performance. To investigate the energetic responses of water immersion at different temperatures during post-exercise recovery and its consequences on subsequent anaerobic performance, a randomized and controlled crossover experimental design was performed with 21 trained cyclists. METHOD: Participants were assigned to receive three passive recovery strategies during 10 min after a Wingate Anaerobic Test (WAnT): control (CON: non-immersed condition), cold water immersion (CWI: 20 â„ƒ), and hot water immersion (HWI: 40 â„ƒ). Blood lactate, cardiorespiratory, and mechanical outcomes were measured during the WAnT and its recovery. Time constant (τ), asymptotic value, and area under the curve (AUC) were quantified for each physiologic parameter during recovery. After that, a second WAnT test and 10-min recovery were realized in the same session. RESULTS: Regardless the water immersion temperature, water immersion increased [Formula: see text] (+ 18%), asymptote ([Formula: see text]+ 16%, [Formula: see text] + 13%, [Formula: see text] + 17%, HR + 16%) and AUC ([Formula: see text]+ 27%, [Formula: see text] + 18%, [Formula: see text] + 20%, HR + 25%), while decreased [Formula: see text] (- 33%). There was no influence of water immersion on blood lactate parameters. HWI improved the mean power output during the second WAnT (2.2%), while the CWI decreased 2.4% (P < 0.01). CONCLUSION: Independent of temperature, water immersion enhanced aerobic energy recovery without modifying blood lactate recovery. However, subsequent anaerobic performance was increased only during HWI and decreased during CWI. Despite higher than in other studies, 20 °C effectively triggered physiological and performance responses. Water immersion-induced physiological changes did not predict subsequent anaerobic performance.


Subject(s)
Cold Temperature , Water , Humans , Temperature , Anaerobiosis , Immersion , Lactates
2.
J Strength Cond Res ; 22(4): 1059-65, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18545207

ABSTRACT

Many studies have analyzed muscle activity during different strength exercises. Although the leg press (LP) is one of the most common exercises performed, there is little evidence of lower limb muscle activity patterns during this exercise and its variations. Thus, this study aimed to verify how mechanical changes and loads affect lower limb muscle activity during the performance of different LP exercises. Fourteen women performed 3 LP exercises: 45 degrees LP (LP45), LP high (LPH), and LP low (LPL) at 40% and 80% of the 1 repetition maximum. The electromyographic activity of the rectus femoris, vastus lateralis, biceps femoris, gastrocnemius, and gluteus maximus was recorded. Results suggested that mechanical changes affect lower limb muscle activity and that it is related to the load used. At moderate effort levels, the rectus femoris and gastrocnemius were more active during the LP45 and LPL than during the LPH. At a high effort level, the rectus femoris and vastus lateralis (quadriceps) were more active during the LPL than the LPH. Again, the rectus femoris and gastrocnemius were more active during the LP45 and LPL than the LPH. On the other hand, gluteus maximus activity was greater during the LPH than the LPL. This study found that coordination patterns of muscle activity are different when performing LP variations at high or moderate effort levels because of mechanical changes and different loads lifted during the different LP exercises. These results suggest that if the goal is to induce greater rectus femoris and vastus lateralis (quadriceps) activation, the LPL should be performed. On the other hand, if the goal is to induce gluteus maximus activity, the LPH should be performed.


Subject(s)
Electromyography , Lower Extremity/physiology , Muscle, Skeletal/physiology , Weight Lifting/physiology , Adult , Female , Humans , Physical Exertion/physiology , Posture/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...