Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1202544, 2023.
Article in English | MEDLINE | ID: mdl-37388233

ABSTRACT

Purpose: This study, conducted during the COVID-19 crisis, primarily aimed to compare the acute toxicity between conventional fractionated radiation therapy (CF-RT) with hypofractionated radiation therapy (HF-RT) among patients who underwent breast-conserving surgery or mastectomy in whom breast or chest wall and regional nodal irradiation (RNI) were indicated. The secondary endpoints were both acute and subacute toxicity, cosmesis, quality of life, and lymphedema features. Methods: In this open and non-inferiority randomized trial, patients (n = 86) were randomly allocated 2:1 in the CF-RT arm (n = 33; 50 Gy/25 fractions ± sequential boost [10 Gy/5 fractions]) versus the HF-RT arm (n = 53; 40 Gy/15 fractions ± concomitant boost [8 Gy/15 fractions]). Toxic effects and cosmesis evaluation used the Common Terminology Criteria for Adverse Events, version 4.03 (CTCAE) and the Harvard/National Surgical Adjuvant Breast and Bowel Project (NSABP)/Radiation Therapy Oncology Group (RTOG) scale. For the patient-reported quality of life (QoL), the European Organisation for Research and Treatment of Cancer quality of life questionnaire (EORTC QLQ-C30) and the breast cancer-specific supplementary questionnaire (QLQ-BR23) were used. Lymphedema was assessed by comparing volume differences between the affected and contralateral arms using the Casley-Smith formula. Results: Grade 2 and grade 3 dermatitis were lower with HF-RT than with CF-RT (28% vs. 52%, and 0% vs. 6%, respectively; p = 0.022). HF-RT had a lower rate of grade 2 hyperpigmentation (23% vs. 55%; p = 0.005), compared to CF-RT. No other differences in overall rates of physician-assessed grade 2 or higher and grade 3 or higher acute toxicity between HF-RT and CF-RT were registered. There was no statistical difference between groups regarding cosmesis, lymphedema rate (13% vs. 12% HF-RT vs. CF-RT; p = 1.000), and functional and symptom scales, during both the irradiation period and after 6 months of the end of treatment. The results revealed that the subset of patients up to 65 years or older did not show a statistical difference between both arm fractionation schedules (p > 0.05) regarding skin rash, fibrosis, and lymphedema. Conclusion: HF-RT was non-inferior to CF-RT, and moderate hypofractionation showed lower rates of acute toxicity, with no changes in quality-of-life outcomes. Clinical trial registration: ClinicalTrials.gov, identifier NCT40155531.

2.
Acta Histochem ; 124(2): 151849, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35033934

ABSTRACT

The complexity of different components of tumor stroma poses huge challenges for therapies targeting the neuroblastoma (NB) microenvironment. The present study aimed to evaluate platinum-based response in IMR-32 neuroblastoma cell line cultured in monolayer (2D) and neurosphere (3D) models. For this, we evaluated mRNA expression of heat shock proteins HSPA1A, HSPB1, TRAP1, HSPA1AL, HSPD1, and DNA damage repair gene ERCC1. After treatment, residual cells were grafted on CAM (chicken chorioallantoic membrane) to evaluate the growth capability and histological paraffin sections were made to assess Ki-67 and HER-2 proteins by immunofluorescence. Our results showed that cisplatin induces mRNA downregulation of Heat Shock Proteins and ERCC1 in IMR-32 cells cultured in 2D or 3D models. In addition, the cisplatin-treatment approach increased HER-2 expression in residual IMR-32 cells grafted on the CAM. Therefore, these insights provide many advances in neuroendocrine tumor biology and knowledge about cisplatin-response in neuroblastoma.


Subject(s)
Antineoplastic Agents , Neural Stem Cells , Neuroblastoma , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line , Cell Line, Tumor , Cisplatin/pharmacology , HSP90 Heat-Shock Proteins , Humans , Neoplasm Recurrence, Local , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Microenvironment
3.
Acta Histochem ; 123(6): 151768, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34403847

ABSTRACT

Despite aggressive therapy, most patients with brain tumors present disease relapse due to the cellular and molecular nature of these tumors. One of the models that best explains the heterogeneity observed in CNS tumors is the presence of cancer stem cells (CSCs). In this paper, we evaluated platinum-based response in brain tumor U-87 MG, LN-18, and KELLY cell lines cultured in monolayer (2D) and neurosphere (CSC enrichment- 3D) models. We evaluated mRNA expression of heat shock proteins (HSPA1A, HSPB1, HSPA1AL, TRAP1, and HSPD1), and DNA repair gene ERCC1. Changes in cell cycle and glycosylation profile were assessed by flow cytometry. After treatment with cisplatin, we found that the mRNA expression of HSPs markedly increased in the U-87 MG and LN-18 neurosphere cells. In KELLY monolayer cells, cisplatin induced upregulation of all genes. In KELLY neurosphere cells, only the HSPA1A, HSPB1, TRAP1, and HSPD1 genes were upregulated. The proportion of cells in the G0/G1 phase was significantly higher in U-87 MG neurosphere cisplatin-treated cells. A trend towards a greater proportion of cells in the S phase of U-87 MG monolayer cisplatin-treated cells was also observed. On the other hand, a significant decrease in the number of cells in the S phase and an increase in G2/M was observed in LN-18 monolayer cisplatin-treated cells. Glycosylation analysis using lectins showed a higher surface binding for PNA in the U-87 MG treated monolayer and a lower binding for Concanavalin A in the treated neurospheres. The binding of Isolectin GS-IB4, GSII, and SBA in KELLY monolayer cisplatin-treated cells was lower whereas the proportion of cells labeled with Concanavalin A was higher. In the KELLY neurosphere cisplatin-treated cells, the binding of Concanavalin A was lower than nontreated cells. Thus, our findings strongly supported the idea that definitions of phenotypic characteristics may help to establish better therapeutic strategies for brain tumors.


Subject(s)
Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/metabolism , Neoplasm Proteins/biosynthesis , Spheroids, Cellular/metabolism , Up-Regulation/drug effects , Cell Culture Techniques , Cell Cycle/drug effects , Cell Line, Tumor , Glioblastoma/pathology , Humans , Spheroids, Cellular/pathology
4.
Oncol Lett ; 20(5): 158, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32934726

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) is a phenomenon during which cancer epithelial cells undergo changes in plasticity and lose cell-cell adhesion with consequent remodeling of the extracellular matrix and development of mesenchymal characteristics. Long non-coding RNAs (lncRNAs) have been described as EMT modulation markers, becoming a promising target in the development of new therapies for cancer. The present study aimed to investigate the role of everolimus at 100 nM as inductor of the EMT phenomenon in cell lines derived from human breast (BT-549), colorectal (RKO-AS45-1) and ovary (TOV-21G) cancer. The integrity of cellular junctions was monitored using an in vitro model of epithelial resistance. The results demonstrated that the EMT genes ZEB1, TWIST1 and TGFB1 were differentially expressed in cells treated with everolimus compared with in untreated cells. lncRNA HOTAIR was upregulated post-treatment only in BT-549 cells compared with in untreated cells. After treatment with everolimus, the intensity of fluorescence of P-cadherin decreased, and that of fibronectin increased in RKO-AS45-1 and TOV-21G cells compared with control cells. The transepithelial electrical resistance at the RKO-AS45-1 monolayer treated with everolimus started to decrease at 48 h. The changes in the gene expression and epithelial resistance may confirm the role of everolimus in EMT.

5.
Oncol Lett ; 19(1): 359-367, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31897148

ABSTRACT

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with the presence of chemoresistance contributing to the poor prognosis. Heat Shock Proteins (HSPs) genes are activated in response to pathophysiological stress and serve a role in a variety of stages in carcinogenesis, acting primarily as anti-apoptotic agents and in chemotherapy resistance in a variety of tumor types. The current study evaluated the HSP gene expression profile in women with ovarian cancer (OC) and their correlation with clinical and pathological aspects of patients with OC. A total of 51 patients included in the current study were divided into four groups: Primary Epithelial Ovarian Cancer (EOC; n=14), metastatic EOC (n=11), ovarian serous cystadenoma (n=7) and no evidence of ovarian malignancy or control groups (n=19). RNA extraction and reverse transcription-quantitative (RT-q) PCR was then performed on the samples obtained. RT-qPCR was performed to compare TNF receptor associated protein 1 (TRAP1), heat shock protein family (HSP) HSPB1, HSPD1, HSPA1A and HSPA1L expression in primary and metastatic EOCs. TRAP1, HSPB1, HSPD1, HSPA1A and HSPA1L gene expression did not differ among groups. HSPA1A, HSPA1L and TRAP1 were revealed to be underexpressed in the primary and metastatic EOC groups, with HSPA1L exhibiting the lowest expression. TRAP1 expression was higher in tumors at stages I/II compared with those at stages III/IV. No correlation was exhibited between HSP expression and age, menarche, menopause, parity, period after menopause initiation, cytoreduction, CA-125 or overall and disease-free survival. HSPA1A was negatively correlated with the risk of mortality from OC. The results indicated that the downregulation of HSPA1A, HSPA1L and TRAP1 could be associated with the clinical prognostic features of women with EOC.

SELECTION OF CITATIONS
SEARCH DETAIL
...