Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2520-2523, 2020 07.
Article in English | MEDLINE | ID: mdl-33018519

ABSTRACT

Non-contact galvanotaxis as a way to drive the cells migration could be a promising tool for a variety of biomedical applications, such as wound healing control, avoiding the interaction between electrodes and cell cultures. To this regard, the efficacy of this electrical stimulus application has to be deeper studied to control physiological migratory phenomena in a remote way.Aim of this work is to provide an experimental investigation on the mobility of cells exposed to a static electric field in a "noncontact" mode, supported by a suitable modeling of the electric field distribution inside the experimental setup. In particular, scratch assays have been carried out placing the electrodes outside the cells medium support and changing the cells holder to study more than one configuration.Clinical Relevance- In this study the in vitro experiments on the non-contact galvanotaxis, together with the numerical simulations of the exposure setup, provide a way to investigate the effects that could affect an electrically drive cell migration.


Subject(s)
Electricity , Taxis Response , Biological Assay , Cell Movement , Static Electricity
2.
Front Bioeng Biotechnol ; 8: 552261, 2020.
Article in English | MEDLINE | ID: mdl-33072718

ABSTRACT

In the last years, microdosimetric numerical models of cells including intracellular compartments have been proposed, aiming to investigate the poration induced by the application of nanosecond pulsed electric fields (nsPEFs). A limitation of such models was the extremely approximate cell and organelle shapes, leading to an incorrect estimation of the electric field or transmembrane potential distribution in the studied domain. In order to obtain a reliable model of in vitro experiments and a one-to-one comparison between experimental and simulated results, here, a realistic model of 12 human mesenchymal stem cells was built starting from their optical microscopy images where different cell compartments were highlighted. The microdosimetric analysis of the cells group was quantified in terms of electric field and transmembrane potentials (TMPs) induced by an externally applied 10-ns trapezoidal pulse with rise and fall times of 2 ns, with amplitudes ranging from 2 to 30 MV/m. The obtained results showed that the plasma and endoplasmic reticulum (ER) membrane of each cell respond in a different way to the same electric field amplitude, depending on differences in shape, size, and position of the single cell with respect to the applied electric field direction. Therefore, also the threshold for an efficient electroporation is highly different from cell to cell. This difference was quantitatively estimated through the cumulative distribution function of the pore density for the plasma and ER membrane of each cell, representing the probability that a certain percentage of membrane has reached a specific value of pore density. By comparing the dose-response curves resulted from the simulations and those from the experimental study of De Menorval et al. (2016), we found a very good matching of results for plasma and ER membrane when 2% of the porated area is considered sufficient for permeabilizing the membrane. This result is worth of noting as it highlights the possibility to effectively predict the behavior of a cell (or of a population of cells) exposed to nsPEFs. Therefore, the microdosimetric realistic model described here could represent a valid tool in setting up more efficient and controlled electroporation protocols.

3.
Article in English | MEDLINE | ID: mdl-32793572

ABSTRACT

The increasing interest toward biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes of liposomes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility to control the release from liposome vesicles, using nanosecond pulsed electric fields characterized by a 10 ns duration and intensity in the order of MV/m. The results are supported by multiphysics simulations which consider the coupling of three physics (electromagnetics, thermal and pore kinetics) in order to explain the occurring physical interactions at the microscopic level and provide useful information on the characteristics of the train of pulses needed to obtain quantitative results in terms of liposome electropermeabilization. Finally, a complete characterization of the exposure system is also provided to support the reliability and validity of the study.

4.
Sci Rep ; 9(1): 4823, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886325

ABSTRACT

Raman microspectroscopy (RM) and polarization sensitive digital holographic imaging (PSDHI) are valuable analytical tools in biological and medical research, allowing the detection of both biochemical and morphological variations of the sample without labels or long sample preparation. Here, using this multi-modal approach we analyze in vitro human sperm capacitation and the acrosome reaction induced by heparin. The multimodal microscopy provides morphofunctional information that can assess the sperms ability to respond to capacitation stimuli (sperm function). More precisely, the birefringence analysis in sperm cells can be used as an indicator of its structural normality. Indeed, digital holography applied for polarization imaging allows for revelation of the polarization state of the sample, showing a total birefringence of the sperm head in non-reacted spermatozoa, and a birefringence localized in the post-acrosomal region in reacted spermatozoa. Additionally, RM allows the detection and spectroscopic characterization of protein/lipid delocalization in the plasma and acrosomal membranes that can be used as valuable Raman biomarkers of sperm function. Interestingly, these spectral variations can be correlated with different time phases of the cell capacitation response. Although further experimentation is required, the proposed multimodal approach could represent a potential label-free diagnostic tool for use in reproductive medicine and the diagnosis of infertility.


Subject(s)
Holography/methods , Infertility/diagnosis , Semen Analysis/methods , Spectrum Analysis, Raman/methods , Spermatozoa/physiology , Acrosome Reaction/physiology , Healthy Volunteers , Humans , Infertility/physiopathology , Male , Microscopy, Fluorescence/methods , Microscopy, Polarization/methods , Sperm Capacitation/physiology
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1678-1681, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946219

ABSTRACT

The increasing interest towards biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. Common examples of electro-sensitive materials include phospholipids that can be used to design nano-sized vesicles suitable for external electric actuation. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility of controlling drug release from liposomes mediated by nanosecond pulsed electric fields.


Subject(s)
Electricity , Feasibility Studies , Liposomes , Nanotechnology , Phospholipids
6.
Extremophiles ; 22(6): 931-941, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30120597

ABSTRACT

Spores of the genus Bacillus are able to resist ionizing radiations and therefore they are a suitable biological model for studies in Astrobiology, i.e. the multidisciplinary approach to the study of the origin and evolution of life on Earth and in the universe. The resistance to γ-radiation is an important issue in Astrobiology in relation to the search for bacterial species that could adapt to life in space. This study investigates the resistance of spores of the thermophilic bacteria Parageobacillus thermantarcticus to γ-rays. The analysis of spores' response to irradiation at a molecular level is performed by means of Raman spectroscopy that allows to get insights in the sequence of events taking place during inactivation. The role of the γ-rays' dose in the inactivation of spores is also investigated, allowing to highlight the mechanism(s) of inactivation including DNA damage, protein denaturation and calcium dipicolinate levels.


Subject(s)
Bacillaceae/radiation effects , Radiation Tolerance , Spores, Bacterial/radiation effects , Gamma Rays
7.
Biosensors (Basel) ; 5(2): 141-57, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25836358

ABSTRACT

A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols.


Subject(s)
Holography/methods , Spectrum Analysis, Raman/methods , Spermatozoa/cytology , Animals , Cattle , Holography/instrumentation , Male , Sex Preselection/methods , Spectrum Analysis, Raman/instrumentation , Spermatozoa/abnormalities , X Chromosome , Y Chromosome
8.
Opt Express ; 20(28): 29705-16, 2012 Dec 31.
Article in English | MEDLINE | ID: mdl-23388798

ABSTRACT

In this paper, we describe and investigate the properties of a broadband source designed from a nanosecond microchip laser operating at high repetition rate and dedicated to multiplex-CARS application. We demonstrate that a strong reshaping of the initial pulse profile drastically affects the Stokes wave and therefore represents an important limitation in CARS experiment. In particular, we emphasize the saturation effect of the peak power of the Stokes wave resulting from supercontinuum generation. However, we show that this type of compact system can be particularly suitable for achieving CARS measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...