Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1105, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33597525

ABSTRACT

In magnetic confinement thermonuclear fusion the exhaust of heat and particles from the core remains a major challenge. Heat and particles leaving the core are transported via open magnetic field lines to a region of the reactor wall, called the divertor. Unabated, the heat and particle fluxes may become intolerable and damage the divertor. Controlled 'plasma detachment', a regime characterized by both a large reduction in plasma pressure and temperature at the divertor target, is required to reduce fluxes onto the divertor. Here we report a systematic approach towards achieving this critical need through feedback control of impurity emission front locations and its experimental demonstration. Our approach comprises a combination of real-time plasma diagnostic utilization, dynamic characterization of the plasma in proximity to the divertor, and efficient, reliable offline feedback controller design.

2.
Rev Sci Instrum ; 90(12): 123514, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893833

ABSTRACT

This work presents a novel, real-time capable, 10-channel Multispectral Advanced Narrowband Tokamak Imaging System installed on the TCV tokamak, MANTIS. Software and hardware requirements are presented together with the complete system architecture. The image quality of the system is assessed with emphasis on effects resulting from the narrowband interference filters. Some filters are found to create internal reflection images that are correlated with the filters' reflection coefficient. This was measured for selected filters where significant absorption (up to 65% within ∼70 nm of the filter center) was measured. The majority of this was attributed to the filter's design, and several filters' performance is compared. Tailored real-time algorithms exploiting the system's capabilities are presented together with benchmarks comparing polling and event based synchronization. The real-time performance is demonstrated with a density ramp discharge performed on TCV. The behavior of spectral lines' emission from different plasma species and their interpretation are qualitatively described.

3.
Rev Sci Instrum ; 82(6): 063508, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21721692

ABSTRACT

An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.

4.
Rev Sci Instrum ; 80(10): 103504, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19895061

ABSTRACT

A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200,000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

5.
Phys Rev Lett ; 103(12): 125001, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19792443

ABSTRACT

In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power.

6.
Rev Sci Instrum ; 79(9): 093503, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19044409

ABSTRACT

An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam. ECE measurements are obtained during high power ECRH operation. This demonstrates the successful operation of the diagnostic and, in particular, a sufficient suppression of the gyrotron component preventing it from interfering with ECE measurements. When integrated into a feedback system for the control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates.

7.
Phys Rev Lett ; 94(3): 035002, 2005 Jan 28.
Article in English | MEDLINE | ID: mdl-15698275

ABSTRACT

A two-fluid computer model of electromagnetic tokamak turbulence, CUTIE, is used to study the dynamic structure and turbulent transport in the Rijnhuizen Tokamak Project tokamak. A discharge with dominant, off-axis electron cyclotron heating is the main focus of the simulations which were extended over several resistive diffusion times. CUTIE reproduces the turbulent transport and MHD phenomena of the experiment. The noninductive components of the current density profile, viz., the dynamo current and the bootstrap current, are identified as key players in the turbulent transport and its suppression and in off-axis MHD events.

SELECTION OF CITATIONS
SEARCH DETAIL
...