Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36673477

ABSTRACT

The non-thermal plasma (NTP) treatment of food products as an alternative for thermal processing has been investigated over the last few years. This quasi-neutral gas contains a wide variety of reactive oxygen and nitrogen species (RONS), which could be lethal for bacterial cells present in the product. However, apart from only targeting bacteria, the RONS will also interact with components present in the food matrix. Therefore, these food components will protect the microorganisms, and the NTP treatment efficiency will decrease. This effect was investigated by supplementing a plain agar medium with various representative food matrix components. After inoculation with Escherichia coli O157:H7 (STEC) MB3885, the plates were treated for 30 s by a multi-hollow surface dielectric barrier discharge (MSDBD) generated in either dry air or air at 75% humidity, at constant power (25.7 ± 1.7 W). Subsequently, the survival of the cells was quantified. It has been found that the addition of casein hydrolysate (7.1 ± 0.2 m%), starch (2.0 m%), or soybean oil (4.6 m%) decreased the inactivation effect significantly. Food products containing these biomolecules might therefore need a more severe NTP treatment. Additionally, with increasing humidity of the plasma input gas, ozone levels decreased, and the bactericidal effect was generally less pronounced.

2.
Food Res Int ; 151: 110866, 2022 01.
Article in English | MEDLINE | ID: mdl-34980403

ABSTRACT

Non-thermal plasma (NTP) is known as an effective source of a variety of reactive species generated in the gas phase. Nowadays, NTP is gaining increasing interest from the food industry as a microbial inactivation technique. In the present study the effect of inoculation method and matrix on inactivation of Salmonella Typhimurium was examined by treating spread plated agar (2.2 log CFU/sample inactivation by NTP), spot inoculated agar (1.9 log CFU inactivation), glass beads (1.3 log CFU inactivation) and peppercorn (0.2 log CFU inactivation). Furthermore, multiple agar matrices supplemented with low and high concentrations of a certain food component (casein, starch, sunflower oil, vitamin C, sodium pyruvate or grinded peppercorns) were inoculated and treated to determine the effect of those components on NTP efficiency. Although starch, vitamin C and sodium pyruvate had no significant influence on the inactivation degree, the presence of 10% casein (2.1 log CFU/sample less inactivation compared to tryptone soy agar (TSA)), 10% pepper (2.1 log CFU less inactivation) or 1% and 10% sunflower oil (1.6 and 2.1 log CFU less inactivation, respectively) in TSA demonstrated the protective effect of these substances for NTP treatment. These experiments led to the conclusion that low inactivation on produce seemed not to arise from the inoculation method nor from the shape of the produce, but is the result of the food matrix.


Subject(s)
Plasma Gases , Salmonella typhimurium , Colony Count, Microbial , Food Handling , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...